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1 Introduction

One of the fundamental and powerful ideas of signal processing is that of a system function and

input-output relations. This is commonly symbolized in the following way. If we have an input time

function, f(t) which passes through a system characterized by a system function h(t), then the output

is given by x(t). This is symbolized in Fig. 1.

Figure 1: Input-output representation of a system in the time domain.

Equivalently in the Fourier domain, if the input, system and output transforms of the time functions

are given by F (ω), H(ω) and X(ω) respectively, then the input-output relations are symbolized as in

Fig. 2.

Figure 2: Input-output representation of a system in the frequency domain.

However, over the last fifty years it has been found that many natural and man made signals are

nonstationary, and the above formulation does not fully describe what is happening. Our fundamental

point to be developed in this report is that if the signals are nonstationary an immense simplification

and advantage occurs if we have input-output relations in the time-frequency plane. We symbolize

this in Fig. 3. where Cf (t, ω) and Cx(t, ω) (e.g. spectrogram, Wigner, etc. distribution) are the input

and output time-frequency distributions and the box with the question mark is meant to symbolize the

time-frequency system function. It is one of the aims of this report to explain how the time-frequency

system function can be obtained and to show the advantages of such a formulation.

To illustrate and motivate our method we start with a simple example. Consider the differential

equation
d2x(t)

dt2
+ 2µ

dx(t)
dt

+ ω2
0x(t) = f(t) (1)

5



Figure 3: Input-output representation of a system in the time-frequency domain.

where f(t) is a given driving force. Perhaps there is no more studied equation than this one. In

principle this equation can be solved “exactly” by many methods. For both practical reasons and to

gain insight, one often transforms this equation into the Fourier domain. Defining

X(ω) =
1√
2π

∫
x(t) e−itω dt (2)

F (ω) =
1√
2π

∫
f(t) e−itω dt (3)

the differential equation transforms into

[−ω2 + 2iµω + ω2
0]X(ω) = F (ω) (4)

whose exact solution is

X(ω) =
F (ω)

[−ω2 + 2iµω + ω2
0]

(5)

The reasons for going into the Fourier domain are many. First, it offers a practical way of solution

since now one can find the time solution by way of

x(t) =
1√
2π

∫
F (ω)

[−ω2 + 2iµω + ω2
0]

eitω dt (6)

Perhaps more importantly the reason for going into the Fourier domain is that one can gain insight into

the nature of the solution and both reasons have become part of standard analysis in both engineering

and physics, as exemplified by input-output relations.

Now consider a specific example. Take

d2x(t)
dt2

+ 2µ
dx(t)

dt
+ ω2

0x = e−αt2/2+iβt2/2+iω1t (7)

The solution obtained numerically is shown in Fig. 4. The Fourier transform of the driving force is

F (ω) =
1√

α− iβ
exp

[
−α(ω − ω1)2

2(α2 + β2)
− i

β(ω − ω1)2

2(α2 + β2)

]
(8)

which gives

X(ω) =
exp

[
−α(ω−ω1)2

2(α2+β2)
− iβ(ω−ω1)2

2(α2+β2)

]
√

α− iβ [−ω2 + 2iµω + ω2
0]

(9)
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and the squared magnitude of this is shown in Fig. 5.

In Figs. 4-5 we plot the signal and spectrum for the values indicated in the caption. Much can

be learned from a study of x(t) and X(ω). However, even more can be learned than is commonly

discussed in textbooks as we now show if we plot the time-frequency distribution. In Fig. 6 we plot

a possible C(t, ω) for the signal x(t). We see that something remarkable happens: one gets a simple,

clear picture of what is going on and of the regions which are important [?]. Such distributions have

been studied for over seventy years in the field of time-frequency analysis in engineering [?, ?, ?], but

the system function approach has not been developed

In this report we consider systems that are described by differential equations. For the sake of

clarity we will developed the ideas for ordinary differential equations with constant coefficients and

then give the other cases in the Appendix. However in the next Section we first give a brief review of
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time-frequency distributions.

2 Brief Review of Time-frequency distributions

Starting in the early 1940s it was realized that for many natural and man made signals their spectra

change over time. The development of the physical and mathematical ideas needed to explain and

understand time-varying spectra has evolved into the field now called “time-frequency analysis” or

time-varying spectral analysis. The purpose of time-frequency analysis is to understand the nature of

signals so that we may understand the physical phenomena generating them, the medium of propaga-

tion, their structure, classification, detection, etc. The basic idea is to find a joint density of time and

frequency that indicates what frequencies are present in the signal and how they are changing in time.

The main initial impetus occurred at Bell Laboratories, with the development of the “sound spectro-

graph” for studying speech. Sometime later it was realized that the principle methods used in engi-

neering for time-frequency analysis are mathematically analogous to the development that occurred

in quantum mechanics starting with Wigner, and now called the phase space formulation of quantum

mechanics independently of their use in quantum mechanics, these distributions have been developed

in signal analysis as a means of understanding how the spectral content of a signal changes in time for

classical variables. This development has a long history and originated with the work of Koenig, Dunn,

and L. Lacy XciteKoenig, Gabor XciteGabor, and Ville XciteVille, and since that time there have

been many quasi-distributions or representations that have been used and developed. A general for-

mulation of quasi-distributions was given by Cohen Xciteleon3, and many methods have been devised

8



for obtaining distributions with desirable properties Xcitechoi,Zhao,Jeong,Sala1,Sala2,Amin2,pat3.

Of particular relevance to our considerations is the wide range of applications of these distribu-

tions to classical systems, that includes acoustics XciteGaun2,pat4, speech processing XcitePitton,

musical instruments XcitePielemeier, machine monitoring XciteRizzoni,Atlas, stochastic processes

XciteAmin3,pitton2, biomedical signals XciteWilliams,Wood, sonar and radar XciteGaun1, nonlin-

ear dynamic al systems XciteLorenzo, among many others Xcitepat. The fundamental idea of this

approach is to study the time-frequency properties of a classical variable such as a pressure wave,

current, etc. The distributions are typically calculated from experimental data or by first generating

the numerical solution from the governing differential equation.

2.1 Mathematical Development

The development of quasi-distributions or time-frequency representations occurred more or less simul-

taneously in both quantum mechanics and signal analysis although from very different perspectives

[?, ?]. The basic objective is to devise a joint density in time and frequency. One can set up the issue

as follows. If we have a signal s(t) and its Fourier transform S(ω), then the instantaneous power is

| s(t) |2 = intensity per unit time at t

and the density in frequency, the energy density spectrum, is

|S(ω) |2 = intensity per unit frequency at ω

What one seeks is a joint density, P (t, ω), so that

P (t, ω) = the density (or intensity) at time t and frequency ω.

Ideally the joint density should satisfy
∫

P (t, ω) dω = | s(t) |2 (10)
∫

P (t, ω) dt = |S(ω) |2 (11)

which are called the time and frequency marginal conditions. Wigner, and later Ville, gave such a

function, which is now called the Wigner-Ville distribution [?, ?],

W (t, ω)=
1
2π

∫
s∗(t− τ/2) s(t + τ/2) e−iτω dτ (12)

It satisfies the time-frequency marginal, Eqs. (10) and (11), but in addition it has the property that

the first conditional moment of time at a given frequency is given by the instantaneous frequency of

9



the signal. An important associated concept is the instantaneous frequency requirement. If we write

a signal in terms of amplitude and phase as

s(t) = A(t) ejϕ(t) (13)

one takes the instantaneous frequency to be

ωi(t) =
dϕ(t)

dt
(14)

Now, the conditional frequency for a given time is given by

〈ω 〉t =
1

| s(t) |2
∫

ω P (t, ω) dω (15)

For many distributions, such as the Wigner distribution

〈ω 〉t = ωi(t) =
dϕ(t)

dt
(16)

From this point of view the instantaneous frequency can be thought of as the average frequency at

a particular time. We point out that for certain distributions, Eq. (16) is exactly satisfied and also,

often, the peak of the distribution is approximately given by dϕ(t)
dt . It is important to mention though

that writing a real signal in a complex form as given by Eq. (13) has a long history. The basic issue is

that there are an infinite number of ways to generate a complex signal from a real signal. Currently

the most widely accepted method is the one devised by Gabor and called the analytic signal. We do

not address these issues here. This is not true for all distributions, but is so for the Wigner and others.

Among other quasi-distributions subsequently proposed in signal analysis and quantum mechanics

were the Rihaczek, Page, and Margenau-Hill, among others. In 1966 a method was devised that could

generate in a simple manner an infinite number of new ones [?]. This general class is given by

C(t, ω) =
1

4π2

∫∫∫
s∗(u− τ/2) s(u + τ/2)φ(θ, τ) e−iθt−iτω+iθu du dτ dθ (17)

where φ(θ, τ) is a two dimensional function called the kernel. The properties of a distribution are

reflected as simple constraints on the kernel, and by examining the kernel one readily can ascertain

the properties of the distribution. This allows one to pick and choose those kernels that produce

distributions with prescribed, desirable properties. Williams and co-workers devised and crystallized

the idea of kernel design. They developed a methodology for the construction of densities with

desirable properties. At about the same time, Zhao, Atlas and Marks similarly produced a density

that resolved many of the difficulties with the Wigner distribution. These works and others led to

major developments in trying to understand the nature of these time-frequency densities and also to

practical applications to the fields mentioned above [?, ?, ?, ?].

10
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Figure 7: The Wigner distribution of s(t) = e−αt2/2+iβt2/2+iω0t is shown in the central part. The top

figure is the real part of the signal and the left figure is the absolute of the spectrum.

One can think of a time-frequency distribution as a two dimensional transform of a one dimensional

function. In the mathematical sense the distribution contains the same information as the signal since

it is constructed from it and for many distributions the signal can be obtained from it uniquely.

However a dramatic thing happens when one plots or studies the time-frequency distribution instead

of the signal or spectrum, namely the physical nature of the signal becomes much clearer. The best

way to understand the concept of a time-frequency representation is to consider a number of examples.

2.2 Example 1

Consider the signal,

s(t) = e−αt2/2+iβt2/2+iω0t (18)

In Fig. 7 we plot the distribution. In the top panel is the real part of the signal, the left panel is the

absolute value of the spectrum and in the main figure we have the time-frequency distribution, and

in this we show the Wigner distribution. Notice that it is totally concentrated along the curve

ω = ω0 + βt (19)

which is exactly the instantaneous frequency.

2.3 Example: Multipart signals

One of the interesting aspects of time-frequency analysis is that it reveals when a signal consists of

parts. We use the word parts instead of components since sometime “components” is often associated

11



Figure 8: The Wigner distribution of Eq. (20).

with orthogonal components which is not necessarily the case here. Consider the signal

s(t) = e−α1t2/2+iω2t + e−α1t2/2+iβ1t2/2+iω1t + e−αt2/2+iγt3/3+iβt2/2+iω0t (20)

In Fig. 8 we show the Wigner distribution of s(t). Note how clearly the time-frequency distribution

reveals that it consists of three parts and moreover note that each part is in some sense approximately

concentrated along its instantaneous frequency, respectively ω1(t), ω2(t) and ω3(t)

ω1(t) = ω2 (21)

ω2(t) = ω1 + β1t (22)

ω3(t) = γt2 + βt + ω0 (23)

Example: whale sound

For a first example we take a whale sound. In Fig. 9, running across the page, above the main

figure is the sound, that is the air pressure as a function time. To the left of the main figure is the

energy density spectrum, that is, the absolute square of the Fourier transform of the signal. The

energy density spectrum indicates what frequencies existed and what their relative strengths were for

the duration of the signal but it does not indicate when these frequencies occurred. For this sound

it tells us that the frequencies ranged from about 175 to about 375 cycles per second. The main

figure is a time-frequency plot and now we can determine not only what frequencies occurred by when

they occurred and what were their relative intensities were as time evolves. At the start the starting

12
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Figure 9: A whale sound.

frequency was about 175 Hz and increased more or less linearly to about 375 Hz in about half a second,

stayed there for about a tenth of a second, and then decreased approximately linearly to about 200

Hz.

Now consider Fig. 10 where the signal is made up of four sine waves with varying duration. If one

were to look at the spectrum the only conclusions one could arrive at is that four constant frequency

signals existed, but with no information about when they existed. The time-frequency plot does that

so clearly and also shows the amplitude variations.

Now consider the signal

s(t) = e−α1t2/2+iω1t + e−α2t2/2+iβt2/2+iω2t (24)

The distribution is plotted in Fig. 11. It is concentrated along the instantaneous frequency of each

part

ω = ω0 + βt ; ω = ω0 (25)

We call such signals Multipart because they consists of parts, in this case two. One of the advantages

of time-frequency analysis is that it effectively shows that a signal consists of parts, something that

can not be seen directly in the signal or spectrum.

As a last example consider

s(t) = (α/π)1/4 e−αt2/2+iηt4/4+iγt3/3+iβt2/2+iω0t (26)

13



3982.5507
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

200 400 600 800 1000
−0.5

0

0.5

Time

F
re

q
u

en
cy

0 0.2 0.4 0.6 0.8
0

100

200

300

400

500

Figure 10: Four constant frequency sine waves of different duration.

Time

F
re

qu
en

cy

−10 −8 −6 −4 −2 0 2 4 6 8
−40

−30

−20

−10

0

10

20

30

40

05.7286

x 10
6

−30

−20

−10

0

10

20

30

−10 −8 −6 −4 −2 0 2 4 6 8

2

2.5

3

3.5

Figure 11: The Wigner distribution of Eq. (24).
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Figure 12: The Wigner distribution of Eq. (26).

whose distribution is illustrated in Fig. 12. Again the concentration is along the instantaneous

frequency

ω = ηt3 + γt2 + βt + ω0 (27)

3 Outline of the Approach

Our aim is to develop input-output relations for nonstationary situations and when the governing

equations relating input and output is a differential equation. Although the details will change when

dealing with ordinary and partial differential equations, the general approach is conceptually the

same, and hence we outline the method in broad terms. Details can be found in the published papers.

Suppose the governing equation is

L[u] = f (28)

where L is a linear operator and f is a known driving force. This situation covers both the ordinary

and partial differential equation possibility. In the former case u is x(t), and in the case of a field u

would be a function of x and t, that is u(x, t).

We will now show the approach in the case of ordinary differential equations. The aim is to obtain

a differential equation for the Wigner distribution of x(t) which will involve the Wigner distribution

of f(t), and therefore the starting equation is

L[x(t)] = f(t) (29)
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Step 1: Take the Wigner distribution of both sides to obtain

WL[x],L[x](t, ω) = Wf,f (t, ω) (30)

We now have to express WL[x],L[x](t, ω) in terms of Wx,x(t, ω).

Step 2: As is often the case L itself is the sum of operators,

L =
∑

n

Ln (31)

giving ∑
n,m

WLn[x],Lm[x](t, ω) = Wf,f (t, ω) (32)

Step 3: Express

WLn[x],Lm[x](t, ω) in terms of Wx,x(t, ω) (33)

This will be discussed in detail for a variety of operators.

Other Equations. It is also of some interest to consider equations of motion for the cross Wigner

distributions. Starting with Eq. 29 write

L[x(t + 1
2τ)] = f(t + 1

2τ) (34)

and multiply both sides by x∗(t− 1
2τ)e−iτω and integrate with respect to τ . We have therefore

∫
x∗(t− 1

2τ) L[x(t + 1
2τ)] e−iτωdτ =

∫
x∗(t− 1

2τ) f(t + 1
2τ) e−iτωdτ (35)

which gives

Wx,L[x](t, ω) = Wx,f (t, ω) (36)

Similarly,

WL[x],x(t, ω) = Wf,x(t, ω) (37)

These equations can be used to manipulate intermediate results in the derivation of the equation for

Wx,x.

4 Transformation of Ordinary Differential Equations with constant

coefficients into phase space

Many input-output linear systems are characterized by ordinary differential equations and the study of

such systems is fundamental in a number of branches in signal processing [?]. The differential equation

may or may not have time-dependent coefficients. It is often the case that these systems exhibit time-

varying frequencies, but generally speaking time-frequency methods have not been applied directly to
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these types of systems. It has been done only in a circuitous way, namely by first numerically solving

the differential equation and then substituting the solution into a time-frequency distribution [?]. For

the input signal we use f(t) and for the output x(t), while for the governing equation we take

an
dnx

dtn
+ an−1

dn−1x

dtn−1
· · ·+ a1

dx

dt
+ a0x = f(t) (38)

or, in polynomial notation

P (D)x(t) = f(t) (39)

where

P (D) = anDn + an−1D
n−1... + a1D + a0 (40)

The Wigner distribution is defined by XciteWigner

Wx,x(t, ω) =
1
2π

∫
x∗(t− 1

2τ) x(t + 1
2τ) e−iτω dτ (41)

Now, take the Wigner distribution of both sides of Eq. (39) to obtain

WP (D)x,P (D)x(t, ω) = Wf,f (t, ω) (42)

We now state our main result: the input-output governing equation for the Wigner distribution

associated with Eq. (38) is given by

P ∗(A)P (B)Wx,x(t, ω) = Wf,f (t, ω) (43)

where

A =
1
2

∂

∂t
− jω B =

1
2

∂

∂t
+ jω (44)

and the star sign stands for complex conjugation of the constants a0, . . . , an. The distribution

Wf,f (t, ω) is the Wigner of is the Wigner distribution of the input

Wf,f (t, ω) =
1
2π

∫
f∗(t− 1

2τ) f(t + 1
2τ) e−iτω dτ (45)

This equation can be seen to be in the variables t, ω, and is in general a partial differential equation

of twice the order of the original differential equation, that is order 2n.

4.1 Zero Driving Force situation

If the driving force is zero then

P ∗(A)P (B)Wx,x = 0 (46)
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In this case the equation of evolution can be simplified to two equations

P ∗(A)Wx,x = P (B)Wx,x = 0 (47)

These equations can be derived in two equivalent ways. First, directly from Eq. (38) with f = 0, or

one can start from the definition of the Wigner distribution and show it straightforwardly. We note

that while Eq. (43) is a differential equation of order 2n, Eqs. (47) are of order n.

5 Ordinary Differential Equations with time dependent coefficients

into phase space

Consider the case of an ordinary differential equation with time-varying coefficients,

an(t)
dnx(t)

dtn
+ an−1(t)

dn−1x(t)
dtn−1

· · ·+ a1(t)
dx(t)

dt
+ a0(t)x(t) = f(t) (48)

As before we rewrite this in polynomial notation

P (D, t)x(t) = f(t) (49)

where

P (D, t) = an(t)Dn + an−1(t)Dn−1 . . . + a1(t)D + a0(t) (50)

A similar derivation that led to Eq. (43) leads now to

P ∗(A, E)P (B,F)Wx,x(t, ω) = Wf,f (t, ω) (51)

where

E =
1
2i

∂

∂ω
+ t F = − 1

2i

∂

∂ω
+ t (52)

and the operators A and B are given in Eq. (44).

For the zero driving force case one obtains

P ∗(A, E)Wx,x(t, ω) = P (B,F)Wx,x(t, ω) = 0 (53)

In Eq. (51) P (B,F) means that in the polynomial P (D, t) one substitutes B for D,and F for t,

and P ∗(A, E) is obtained similarly. Also, the complex conjugation in P ∗(A, E) means that the original

polynomial is conjugated and not the arguments A, E . Note that Eq. (51) is a partial differential

equation, and that makes sense since we are dealing with two variables jointly, namely time and

frequency. The derivation of Eq. (51) is given in the Appendix.
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6 Analysis of differential Equations in Time-Frequency Phase Space

for the Bilinear Distributions

We consider a linear system defined by an ordinary differential equation of the type

an(t)
dnx(t)

dtn
+ an−1(t)

dn−1x(t)
dtn−1

· · ·+ a1(t)
dx(t)

dt
+ a0(t)x(t) = f(t) (54)

where f(t) is the input or forcing term, x(t) is the output of the system and an(t), . . . , a0(t) are

the time-varying coefficients, generally complex. As mentioned we have been able to obtain the

governing equation for the Wigner distribution for the solution of this equation. We consider here

the possibility of transforming such equations into the time-frequency domain for a general bilinear

class of distributions. We will show that this is possible for a bilinear distribution associated to the

solution of Eq. (54). We will do so in the kernel notation and the general K formalism

6.1 Equation of motion in the kernel notation

The general class of bilinear distributions is

C(t, ω) =
1

4π2

∫∫∫
x∗(u− τ/2)x(u + τ/2)φc(θ, τ)e−iθt−iτω+iθududθdτ (55)

where φc(θ, τ) is the kernel. To obtain an equation for C(t, ω) associated to Eq. (54) we first put it

into polynomial notation

P (D, t)x(t) = f(t) (56)

where, as usual

P (D, t) = an(t)Dn + an−1(t)Dn−1 + · · ·+ a1(t)D + a0(t) (57)

and

D =
d

dt
(58)

Then the equation for an arbitrary bilinear time-frequency distribution C(t, ω) is

P ∗(Ac, Ec)P (Bc,Fc)Cx(t, ω) = Cf (t, ω) (59)

where

Ac = φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)(
1
2

∂

∂t
− iω

)
φ−1

c

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
(60)

Bc = φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)(
1
2

∂

∂t
+ iω

)
φ−1

c

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
(61)

Ec = φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)(
t +

1
2i

∂

∂ω

)
φ−1

c

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
(62)

Fc = φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)(
t− 1

2i

∂

∂ω

)
φ−1

c

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
(63)
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We have already derived the operators Ac and Bc in [?, ?]. Here we present the derivation of the

operators Ec and Fc. We use the following relation

Cf,g(t, ω) = φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
Wf,g(t, ω) (64)

Now we evaluate

Ctf,g = φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
Wtf,g (65)

= φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
EWf,g (66)

= φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
Eφ−1

c

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
Cf,g (67)

= EcCf,g (68)

Where we have used that

Wtf,g = EWf,g (69)

=
(

t +
1
2i

∂

∂ω

)
Wf,g (70)

Following the same approach one has

Cf,tg = FcCf,g (71)

We can now evaluate

Ca(t)f,g = C∑
αntnf,g (72)

=
∑

α∗nCtnf,g (73)

=
∑

α∗nEn
c Cf,g (74)

= a∗(Ec)Cf,g (75)

With the identical procedure one also obtains

Cf,b(t)g = b(Fc)Cf,g (76)

6.2 Equation of motion in the K notation

All the bilinear distributions can also be written in the following way

C(t, ω) =
∫∫

Kc(t, ω, t′, t′′)x∗(t′) x(t′′) dt′dt′′ (77)

where now Kc(t, ω, t′, t′′) is the new kernel associated to every distribution C(t, ω). In particular

Kc(t, ω, t′, t′′) is given by

Kc(t, ω, x′, x) =
1

4π2
e−iω(x′−x)

∫
φc(θ, x′ − x)e−i(t−(x+x′)/2)θdθ (78)
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We now claim that the equation for the K notation associated to Eq. (54) is

P ∗(Ac, Ec)P (Bc,Fc)Cx(t, ω) = Cf (t, ω) (79)

where the operators have the same form given in Eqs. (60)-(63), where one has to make the substitution

φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
= 2πeω ∂

∂ω

∫
Kc

(
t, ω, t− t′ +

1
2i

∂

∂ω
, t− t′ − 1

2i

∂

∂ω

)
et′ ∂

∂t dt′ (80)

To prove Eq. (80) one considers that Eq. (78) is basically a Fourier transform for every fixed x, x′.

Hence we make the following change of variables

τ = x′ − x (81)

t′ = t− (x + x′)/2 (82)

which gives

x′ = t− t′ + τ/2 (83)

x = t− t′ − τ/2 (84)

We substitute in Eq. (78) and we obtain
∫

φc(θ, τ)e−it′θdθ = 4π2eiωτKc(t, ω, t− t′ + τ/2, t− t′ − τ/2) (85)

Then we obtain

φc(θ, τ) = 2πeiωτ

∫
Kc(t, ω, t− t′ + τ/2, t− t′ − τ/2)eit′θdt′ (86)

By substituting

θ → 1
i

∂

∂t
(87)

τ → 1
i

∂

∂ω
(88)

we finally obtain Eq. (80).

7 Differential equations for the Short-Time Fourier Transform do-

main

We define the Short-Time Fourier transform, Sx(t, ω), of a signal, x(t), by

Sx(t, ω) =
1√
2π

∫
h(τ − t)x(τ)e−iτωdτ (89)

where h(t) is the window function. The equation for the Short-Time Fourier Transform associated to

Eq. (54) is

P (As, Es)Sx(t, ω) = Sf (t, ω) (90)
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where

As =
(

∂

∂t
+ iω

)
(91)

Es = i
∂

∂ω
(92)

To prove Eq. (90) we first evaluate

S dx
dt

(t, ω) =
1√
2π

∫
h(τ − t)

dx(τ)
dτ

e−iτωdτ (93)

=
1√
2π

(
h(τ − t)x(τ)e−iτω

)+∞
−∞+ (94)

− 1√
2π

∫ (
dh(τ − t)

dτ
x(τ)e−iτω − iωh(τ − t)x(τ)e−iτω

)
dτ (95)

=
1√
2π

∂

∂t

∫
h(τ − t)x(τ)e−iτωdτ + iω

1√
2π

∫
h(τ − t)x(τ)e−iτωdτ (96)

=
(

∂

∂t
+ iω

)
Sx(t, ω) (97)

= AsSx(t, ω) (98)

where we have used

h(−∞) = h(+∞) = 0 (99)

dh(τ − t)
dτ

= −∂h(τ − t)
∂t

(100)

Then we consider

Sa(t)x(t, ω) =
1√
2π

∫
h(τ − t)a(τ)x(τ)e−iτωdτ (101)

= a

(
i

∂

∂ω

)
1√
2π

∫
h(τ − t)x(τ)e−iτωdτ (102)

= a(Es)Sx(t, ω) (103)

which gives Eq. (90).

8 Transformation to the Wavelet domain

We now consider the problem of writing an equation for the Continuous Wavelet Transform (CWT)

whose solution corresponds to the time domain function x(t) as given by Eq. (54). Here we present a

restricted version of the problem, addressing linear differential equations with constant coefficients

an
dnx(t)

dtn
+ an−1

dn−1x(t)
dtn−1

· · ·+ a1
dx(t)

dt
+ a0x(t) = f(t) (104)
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The CWT of a signal x(t) is defined as

Cx(a, b) =
1√
a

∫
ψ∗

(
t− b

a

)
x(t)dt (105)

where a > 0, −∞ < b < +∞. We rewrite Eq. (104) in the simplified polynomial notation

P (D)x(t) = f(t) (106)

The equation for the CWT is

P (Aw)Cx(a, b) = Cf (a, b) (107)

where

Aw =
∂

∂b
(108)

To prove Eq. (107) we evaluate

C dx
dt

(a, b) =
1√
a

∫
ψ∗

(
t− b

a

)
dx(t)

dt
dt (109)

=
1√
a

(
ψ∗

(
t− b

a

)
x(t)

)+∞

−∞
− 1√

a

∫
x(t)

d

dt
ψ∗

(
t− b

a

)
dt (110)

=
1√
a

∂

∂b

∫
ψ∗

(
t− b

a

)
dx(t)

dt
dt (111)

= AwCx(a, b) (112)

where we have used

ψ(−∞) = ψ(+∞) = 0 (113)

d

dt
ψ∗

(
t− b

a

)
= − ∂

∂b
ψ∗

(
t− b

a

)
(114)

Also, we note that since Cx(a, b) is a linear operation, then, for any given complex constant, k, we

have that Ckx(a, b) = kCx(a, b). This fact was used in the above derivation

9 Transformation to the Ambiguity function domain

We have considered a number of topics that involve two fundamental problems in signal analysis, sys-

tems governed by differential equations and whose solutions generally give a nonstationary spectrum.

We also point out that while in this paper we have just considered ordinary differential equations

these methods can be readily extended to situations governed by partial differential equations, and

to systems of ordinary differential equations. In conclusion we also mention that we have worked

out differential equations for the ambiguity function and the autocorrelation function. The ambiguity

function is defined by

Ax(t, ω) =
1
2π

∫
x∗(t− τ/2)x(t + τ/2)eiθtdt (115)
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and the differential equations that is satisfied is

P ∗(Aa, Ea)P (Ba,Fa)Ax(t, ω) = Af (t, ω) (116)

where

Aa = −1
2
iθ − ∂

∂τ
, Ba = −1

2
iθ +

∂

∂τ
(117)

Ea =
1
i

∂

∂θ
− 1

2
τ, Fa =

1
i

∂

∂θ
+

1
2
τ (118)

For the autocorrelation function, defined by

RX(t1, t2) = E[X(t1)X∗(t2)] (119)

the differential equation is given by

P

(
∂

∂t1
, t1

)
P ∗

(
∂

∂t2
, t2

)
RX(t1, t2) = RF (t1, t2) (120)

10 Partial Differential Equations

For partial differential equations of the form

N∑

k=1

ak(x, t)
∂k

∂xk
u(x, t) +

M∑

l=1

bl(x, t)
∂l

∂tl
u(x, t) = f(x, t) (121)

it is possible to obtain an equation in the Wigner distribution domain similar to the ordinary differential

equation case, provided that we use the four dimensional Wigner distribution, Z, defined as

Zu,u(x, p, t, ω) =
1

(2π)2

∫
u∗(x− 1

2τx, t− 1
2τ)u(x + 1

2τx, t + 1
2τ)e−iτω−iτxpdτdτx (122)

This distribution is discussed in the Appendix, here we have reported its definition again for clarity.

We shall need to use the following operators,

Ax =
1
2

∂

∂x
− ip At =

1
2

∂

∂t
− iω (123)

Bx =
1
2

∂

∂x
+ ip Bt =

1
2

∂

∂t
+ iω (124)

and

Ex =
1
2j

∂

∂p
+ x Fx = − 1

2j

∂

∂p
+ x (125)

Et =
1
2j

∂

∂ω
+ t Ft = − 1

2j

∂

∂ω
+ t (126)

The same approach of the previous sections for ordinary differential equations gives
[

N∑

k=1

a∗k(Ex, Et)Ak
x +

M∑

l=1

b∗l (Ex, Et)Al
t

] [
N∑

m=1

am(Fx,Ft)Bm
x +

M∑

n=1

bn(Fx,Ft)Bn
t

]
Zu,u= Zf,f (127)
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If the driving force f(x, t) is zero one has that

N∑

k=1

[
a∗k(Ex, Et)Ak

x

]
Zu,u = −

M∑

l=1

[
b∗l (Ex, Et)Al

t

]
Zu,u (128)

N∑

k=1

[
ak(Fx,Ft)Bk

x

]
Zu,u = −

M∑

l=1

[
bl(Fx,Ft)Bl

t

]
Zu,u (129)

We have found it convenient to combine these two equations by adding and subtracting them

N∑

k=1

[
a∗k(Ex, Et)Ak

x ± ak(Fx,Ft)Bk
x

]
Zu,u =

M∑

l=1

[
b∗l (Ex, Et)Al

t ± bl(Fx,Ft)Bl
t

]
(130)

10.1 Notation and Definitions

All the integrals without limits mean integration from −∞ to ∞.

Ordinary differentiation of functions with respect to time will be indicated by

ġ(t) =
d

dt
g(t) g(n) =

dn

dtn
g(t) (131)

We define the Wigner distribution for a signal x(t) by

Wx,x(t, ω) =
1
2π

∫
x∗(t− 1

2τ) x(t + 1
2τ) e−iτω dτ (132)

and the cross-Wigner distribution between two signals, x(t) and y(t) by

Wx1,x2(t, ω) =
1
2π

∫
x∗1(t− 1

2τ)x2(t + 1
2τ) e−iτω dτ (133)

When we deal with partial differential equations, we need to consider multidimensional signals

(fields), u(x, t). For a field the Wigner distribution is

Wu,u(x, p, t) =
1
2π

∫
u∗(x− 1

2τx, t)u(x + 1
2τx, t)e−iτxp dτx (134)

and analogously the cross-Wigner distribution between two fields, u1(x, t) and u2(x, t) is

Wu1,u2(x, p, t) =
1
2π

∫
u∗1(x− 1

2τx, t) u2(x + 1
2τx, t)e−iτxp dτx (135)
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For partial differential equations it is generally not possible to write an equation for the Wigner

distribution, Wu,u(x, p, t), corresponding to an arbitrary equation governing the field. It is nevertheless

possible to always derive such an equation for the more general Wigner distribution which we define

by

Zu,u(x, p, t, ω) =
1

(2π)2

∫
u∗(x− 1

2τx, t− 1
2τ)u(x + 1

2τx, t + 1
2τ)e−iτω−iτxp dτ dτx (136)

We note that the ordinary Wigner distribution, W (x, p, t), may be obtained from Z(x, p, t, ω) by way

of

Wu,u(x, p, t) =
∫

Zu,u(x, p, t, ω) dω (137)

A significant simplification in notation is achieved by defining the following operators

At =
1
2

∂

∂t
− iω Bt =

1
2

∂

∂t
+ iω (138)

Et = t +
1
2i

∂

∂ω
Ft = t− 1

2i

∂

∂ω
(139)

Operators of this kind were defined by Moyal. When dealing with a field u(x, t) one has to introduce

the additional operators

Ax =
1
2

∂

∂x
− ip Bx =

1
2

∂

∂x
+ ip (140)

Ex = x +
1
2i

∂

∂p
Fx = x− 1

2i

∂

∂p
(141)

Also, we will indicate ordinary differentiation in the following alternative ways

ġ(t) =
d

dt
g(t) g(n) =

dn

dtn
g(t) (142)

and we will use the differential operator,

D =
d

dt
(143)

As mentioned above, we will see that it is not always possible to obtain an equation of motion for

the Wigner distribution Wu,u(x, p, t), but it is always possible to obtain an equation of motion for a

Wigner type distribution of the four variables, namely position, momentum time and frequency. We

define such a function by

Zu,u(x, p, t, ω) =
1

(2π)2

∫
u∗(x− 1

2τx, t− 1
2τ)u(x + 1

2τx, t + 1
2τ)e−iτω−iτxp dτ dτx (144)
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The relation between W and Z is that W is the marginal of Z

∫
Zu,u(x, p, t, ω) dω = Wu,u(x, p, t) (145)

It is convenient to define the following operators1

At =
1
2

∂

∂t
− iω Bt =

1
2

∂

∂t
+ iω (146)

Et = t +
1
2i

∂

∂ω
Ft = t− 1

2i

∂

∂ω
(147)

Also, the operators Ax, Bx, Ex, Fx for fields are similarly defined as per Eq. (146) and Eq. (147),

where t is replaced by x and ω by the momentum, p.

11 Example: ẋ = f(t)

We consider an example that to some extent is analytically doable. For the differential equation we

take

ẋ = f(t) (148)

with

f(t) = ct e−αt2/2+iβt2/2 (149)

which with the boundary condition that x(−∞) = 0 gives

x(t) = − c

α− iβ
e−αt2/2+jβt2/2 (150)

The Wigner distribution of both x and f can be done exactly

Wf,f (t, ω) =
2c2

π

√
π

4α3

[
αt2 + (ω − βt)2/α− 1

2

]
e−αt2−(ω−βt)2/α

Wx,x(t, ω) =
1
π

√
π

α

c2

α2 + β2
e−αt2−(ω−βt)2/α (151)

We now show how our procedure can be used to obtain the Wigner distribution directly. Using

Eq. (39) the equation of motion for the Wigner distribution is

ABWx,x(t, ω) = Wf,f (t, ω) (152)

that is
1
4

∂

∂t
Wx,x(t, ω) + ω2Wx,x(t, ω) = Wf,f (t, ω) (153)

1 Operators of this kind were defined by Moyal.
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This equation is a partial differential equation but since there are no derivatives with respect to

ω we can solve it as an ordinary differential equation keeping ω fixed. By repeating the process for

a range of ω we hence get a numerical solution for Wx,x(t, ω). We have done so and compared to

the exact answer, Eq. (151), with the result that the answers are identical to within a fraction of a

percent.

12 Example: RC circuit with deterministic chirp driving force

As an example consider an RC circuit that is being driven by a driving force whose instantaneous

frequency varies linearly with time. The governing equation is

dx(t)
dt

+ kx = eiω0t+iβt2/2 (154)

where k is a positive constant. Using Eq. (43) we have that the associated equation for the Wigner

distribution is

[A + k][B + k]Wx,x(t, ω) = δ(ω − ω0 − βt) (155)

This equation can be solved exactly, giving

Wx,x(t, ω) =
4
|β|u(τ)e−2kτ sin 2ωτ

2ω
(156)

where u(τ) is the step function and

τ = t− ω − ω0

β
(157)

As initial conditions we have taken

Wx,x(−∞, ω) = 0 (158)

∂

∂t
Wx,x(−∞, ω) = 0 (159)

that can be proved to correspond to the case

x(−∞) = 0

In Fig. 13 we give a specific case where k = 20, ω0 = 0, and β = 113. The dashed line represents the

instantaneous frequency of the input chirp f(t),

ωi = ω0 + βt = βt (160)

while the gray image is the Wigner distribution obtained from Eq. (156) with the given parameters.

The figure clearly reveals the bandpass behavior of the system, that gradually filters out the forcing

term f(t).
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Figure 13: The dashed line indicates the instantaneous frequency of the input chirp. The gray image

is the Wigner distribution Wx,x(t, ω) given in Eq. (156) and corresponding to the solution x(t) to

Eq. (154). The Wigner distribution highlights the lowpass behavior of the system, that filters out the

input signal as t →∞.

13 Example: RLC circuit with generic deterministic input

Consider the harmonic oscillator with a deterministic driving force,

d2x(t)
dt2

+ 2µ
dx(t)

dt
+ ω2

0x = f(t) (161)

where x(t) is the state variable (e.g. current, position) and f(t) is the driving term. If we want to

study the time-frequency properties we could solve this equation and substitute the answer into the

Wigner distribution,

Wx,x(t, ω) =
1
2π

∫
x∗(t− 1

2τ) x(t + 1
2τ) e−iτω dτ (162)

We want to write the equation of motion for the Wigner distribution and solve that directly. We first

rewrite the equation in polynomial notation

[
D2 + 2µD + ω2

0

]
x(t) = f(t) (163)

Using our method for ordinary differential equations with constant coefficients, Eq. (43), we obtain

the equation of motion for the Wigner distribution

[
A2 + 2µA + ω2

0

] [
B2 + 2µB + ω2

0

]
Wx,x = Wf,f (164)

Explicitly, [
a4

∂4

∂t4
+ a3

∂3

∂t3
+ a2

∂2

∂t2
+ a1

∂

∂t
+ a0

]
Wx,x(t, ω) = Wf,f (t, ω) (165)
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where,

a0 = (ω2
0 − ω2)2 + 4µ2ω2 (166)

a1 = 2µ(ω2
0 + ω2) (167)

a2 =
1
2
(ω2

0 + ω2 + 2µ2) (168)

a3 =
1
2
µ (169)

a4 = 1/16 (170)

14 Example: The Exact Solution to the Gliding Tone Problem

In 1948 Barber and Ursell [1] and independently Hok [3] considered the problem of the response of

a harmonic oscillator to a “gliding tone”.2 Specifically the issue is the behavior of the solution to a

resonant circuit [1,3,4]

d2x(t)
dt2

+ 2µ
dx(t)

dt
+ ω2

0x(t) = eiω1t+iβt2/2 (171)

with

f(t) = eiβt2/2 (172)

Subsequent to Barber and Ursell, and Hok, many investigators have considered this problem in a

variety of contexts and have tried to qualitatively understand the solution and also obtain approximate

solutions. An exact solution to this problem has not been achieved. We, also, have not been able to

obtain an exact explicit solution; but we have been able to obtain the exact solution to the Wigner

distribution of x(t)! We have been able to obtain the exact solution by using our method, that is by

transforming the original equation in time to the domain of the Wigner distribution, and by solving

it.

We give here the explicit solution to the gliding tone problem and subsequently we give a few

numerical examples. The reason this is called the gliding tone problem is because the instantaneous

frequency of the driving force increases linearly,

ωi(t) = ω1 + βt (173)

In the gliding tone problem one wants to ascertain the instantaneous frequency of the response. There

have been a number of studies made by examining approximate solutions of Eq. (171), because indeed

an exact solution to Eq. (161) with f(t) given by Eq. (171) has not been achieved. However, we have

been able to solve the equation for the Wigner distribution of the gliding tone problem exactly. That
2The phrase “gliding tone” was used by Barber and Ursell.
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Figure 14: Wigner distribution of the solution to the gliding tone problem. Underdamped case with

µ = 0.5.

is, we have been able to solve Eq. (165) when the input term is the Wigner distribution of the gliding

tone, Eq. (172). The detailed answer is given in Sect. 14.1.

We now give some graphical examples to illustrate the results. We first consider the underdamped

case, that is, when µ < ω0. In Figs. 14-16 we plot the Wigner Wx,x(t, ω) for the three cases µ =

0.5, µ = 1, and µ = 1.5, respectively . In both of the three cases we chose ω0 = 18 and ω1 = β = 4. The

gray scale image in every picture is the exact Wigner distribution of x(t); the dashed line represents

the instantaneous frequency of the forcing chirp, that is ωi(t) = ω1 + βt. The input chirp f(t) is

concentrated only along this line, because its representation in the Wigner distribution domain is

δ(ω − ω1 − βt). We see that the response of the system is mainly concentrated around the critical

frequency ωc (it is ωc ≈ ω0), while it is weaker at all the other frequencies. Also, observing the limit

at ω = ωc, one can see that the Wigner distribution has an exponential damping factor, where the

damping coefficient is 2µ, which is twice the damping of the free oscillation factor µ of the system.

Comparing the three pictures we see how changing the damping factor µ influences the system response.

Smaller values of µ imply less damping and hence longer tails in the response along ωc. Increasing

µ forces the system to have a stronger damping and that is reflected in the shorter tail of the main

response located around the resonant frequency ωc.

In Fig. 17 we give an example of an overdamped case where µ > ω0, and in particular we take

µ = 30. Here the system response is Inharmonic, and we do not have any special resonant frequency.

Notice that the output is greater for small times t, while when t →∞ the response goes to zero. This
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Figure 15: Wigner distribution of the solution to the gliding tone problem. Underdamped case with

µ = 1
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Figure 16: Wigner distribution of the solution to the gliding tone problem. Underdamped case with

µ = 1.5
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Figure 17: Wigner distribution of the solution to the gliding tone problem for a overdamped case,

µ > ω0.
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Figure 18: Wigner distribution of the solution to the gliding tone problem for a critically damped

case, µ = ω0.
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is in complete agreement with the result obtained considering the system transfer function.

Finally in Fig. 18 we show a critically damped case, with µ = ωc = 18. Considerations on this

case are similar to those for the overdamped case.

We point out that we have obtained the Wigner distribution from Eq. (165) by choosing the

following initial conditions:

Wx,x(−∞, ω) =
∂Wx,x(−∞, ω)

∂t
=

∂2Wx,x(−∞, ω)
∂t2

=
∂3Wx,x(−∞, ω)

∂t3
= 0 (174)

We have proven XciteRepresent ability that this choice corresponds to finding the Wigner distri-

bution of the solution x(t) that has zero initial conditions at t = −∞.

14.1 The exact solution to the Gliding Tone Problem

We now give the exact solution of the Wigner distribution of x(t) which satisfies Eq. (165)

W (t, ω) =
2
|β|

u(τ)
z2 − z1

×
[

1
z̄1 − z1

(
e−2z1τ − e−2z̄2τ

z̄2 − z1
− e−2z̄1τ − e−2z̄2τ

z̄2 − z̄1

)
+

− 1
z̄1 − z2

(
e−2z2τ − e−2z̄2τ

z̄2 − z2
− e−2z̄1τ − e−2z̄2τ

z̄2 − z̄1

)]
(175)

with

τ = t− ω/β (176)

and

z1 =−jω + µ−
√

µ2 − ω2
0 (177)

z̄1 =jω + µ−
√

µ2 − ω2
0 (178)

z2 =−jω + µ +
√

µ2 − ω2
0 (179)

z̄2 =jω + µ +
√

µ2 − ω2
0 (180)

and where u(t) is the Heaviside step function given by

u(t) =





1, t ≥ 0

0, t < 0
(181)

14.1.1 Underdamped, Overdamped, and Critically Damped Cases

We now explicitly specialize to the underdamped, overdamped and critically damped cases. As is

standard we define the critical frequency, ωc, for these three cases

34



ωc =
√

ω2
0 − µ2 µ < ω0 Underdamped

ωc =
√

µ2 − ω2
0 µ > ω0 Overdamped

ωc = 0 µ = ω0 Critically damped

The explicit Wigner distributions are

Underdamped:

W (t, ω) =
1

2|β|ωc
u(τ)e−2µτ ×

[
sin(2(ω − ωc)τ)

ω(ω − ωc)
− sin(2(ω + ωc)τ)

ω(ω + ωc)

]

Overdamped:

W (t, ω) =
1
|β|u(τ)e−2µτ ×

[
sin(2ωτ) cosh(2ωcτ)

ω(ω2 + ω2
c )

− cos(2ωτ) sinh(2ωcτ)
ωc(ω2 + ω2

c )

]

Critically Damped:

W (t, ω) =
1
|β|u(τ)e−2µτ sin(2ωτ)− 2ωτ cos(2ωτ)

ω3
(182)

In the above solutions there are singularities at some values of ω. We give the limits at those

singular values for the three cases:

Underdamped:

lim
ω→±ωc

W (t, ω) =
1

2|β|ωc
u(τ)e−2µτ

[
4ωcτ − sin(4ωcτ)

2ω2
c

]
(183)

lim
ω→0

W (t, ω) =
1
|β|u(t)e−2µt

[
sin(2ωct)− 2ωct cos(2wct)

ω3
c

]
(184)

Overdamped :

lim
ω→0

W (t, ω) =
1
|β|u(t)e−2µt ×

[
2ωct cosh(2ωct)− sinh(2ωct)

ω3
c

]

Critically Damped:

lim
ω→0

W (t, ω) =
8
3

1
|β|u(t)t3e−2µt (185)

15 Example: a∂2u
∂q2 + V (x, t)u(x, t) = b∂u

∂t

To bring forth some of the ideas discussed above, let us consider the following type of equation

a
∂2u

∂q2
+ V (x, t)u(x, t) = b

∂u

∂t
(186)
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where for the moment we do not make any assumptions about a or b, except that they are com-

plex constants. This leads to the following equations for the Wigner distribution for fields (see the

Appendix)

a∗A2
xZu,u + V ∗(Ex, Et)Zu,u = b∗AtZu,u (187)

aB2
xZu,u + V (Fx,Ft)Zu,u = bBtZu,u (188)

Adding and subtracting the above two equations we have

[
a∗A2

x ± aB2
x

]
Zu,u + [V ∗(Ex, Et)± V (Fx,Ft)]Zu,u = [b∗At ± bBt]Zu,u (189)

The case where b is pure imaginary and a real

We consider the special case where a is real and b pure imaginary and write

b = i|b| (190)

Taking the negative sign in Eq. (189), we have

a
[
A2

x −B2
x

]
Zu,u + [V ∗(Ex, Et)− V (Fx,Ft)]Zu,u = −i|b| [At + Bt] Zu,u (191)

But

A2
x −B2

x = −2ip
∂

∂x
(192)

At + Bt =
∂

∂t
(193)

and therefore

−i|b|∂Zu,u

∂t
= −i2ap

∂

∂x
Zu,u + [V ∗(Ex, Et)− V (Fx,Ft)]Zu,u (194)

or

|b|∂Zu,u

∂t
= 2ap

∂

∂x
Zu,u + i [V ∗(Ex, Et)− V (Fx,Ft)]Zu,u (195)

This is the equation of motion in its most general terms. It can be written in a more explicit way.

First we mention that for any four dimensional function K(x, p, t, ω)

V (Fx,Ft)K(x, p, t, ω) =
(

1
2π

)2 ∫
V (x + x′/2, t + t′i(p

′−p)x′+i(ω′−ω)t′K(x, p′, t, ω′)dx′dp′dt′dω′ (196)

and

V ∗(Ex, Et)K(x, p, t, ω) =
(

1
2π

)2 ∫
V ∗(x + x′/2, t + t′−i(p′−p)x′−i(ω′−ω)t′K(x, p′, t, ω′)dx′dp′dt′dω′ (197)
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Now consider real potentials, then

[V (Ex, Et)− V (Fx,Ft)]Zu,u(x, p, t, ω) =
2i

(2π)2

∫
V (x + x′/2, t + t′/2)×

sin[(p′ − p)x′ + (ω′ − ω)t′]Zu,u(x, p′, t, ω′)dx′dp′dt′dω′

and hence we have for the equation of motion

|b|∂Zu,u

∂t
= 2ap

∂

∂x
Zu,u +

2
(2π)2

∫
sin[(p′ − p)x′ + (ω′ − ω)t′]×

V (x + x′/2, t + t′/2)Zu,u(x, p′, t, ω′)dx′dp′dt′dω′ (198)

which can also be written as

|b|∂Zu,u

∂t
= 2ap

∂

∂x
Zu,u +

8
(2π)2

∫
sin[2(p′ − p)(x′ − x) + 2(ω′ − ω)(t′ − t)]×

V (x′, t′)Zu,u(x, p′, t, ω′)dx′dp′dt′dω′ (199)

15.1 The Schroeder Equation

Let us now specialize explicitly to the Schroeder equation.

|b| = 1 a = − 1
2m

(200)

By using the results above we have

∂Zψ,ψ

∂t
= − p

m

∂

∂q
Zψ,ψ + i [V ∗(Eq, Et)− V (Fq,Ft)]Zψ,ψ (201)

and

∂Zψ,ψ

∂t
= − p

m

∂

∂q
Zψ,ψ +

8
(2π)2

×
∫

sin[2(p′ − p)(q′ − q) + 2(ω′ − ω)(t′ − t)]V (q′, t′)Zψ,ψ(q, p′, t, ω′)dq′dp′dt′dω′ (202)

These are the equations of motion for the Wigner distribution for time dependent potentials. Notice

that one cannot integrate out ω and get a differential equation for the ordinary Wigner distribution.

However, if we have time-independent potentials then one can integrate out ω to obtain such an

equation. We take

V (q, t) = V (q) (203)

and use ∫
sin[(p′ − p)q′ + (ω′ − ω)t′]dt′ = 2πδ(ω − ω′) sin[(p′ − p)q′] (204)

then Eq. (202) reduces to
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∂Wψ,ψ

∂t
= − p

m

∂

∂q
Wψ,ψ +

1
π

∫
V (q + q′/2) sin[(p′ − p)q′]Wψ,ψ(q, p′, t)dq′dp′ (205)

or

∂Wψ,ψ

∂t
= − p

m

∂

∂q
Wψ,ψ +

2
π

∫
V (q′) sin[2(p′ − p)(q′ − q)]Wψ,ψ(q, p′, t)dq′dp′ (206)

which is the equation originally obtained by Wigner and Moyal.

Liouville sine operator form of the equation of motion. Moyal derived the equation of motion

for the Wigner distribution in a Liouville type operator form. This was done for time-independent

potentials. We now ask whether the same type of equation can be obtained for the time-dependent

case. First we recollect the Liouville type expression Moyal XciteMoyal obtained for Eq. (206). We

shall present the result in a somewhat different way then Moyal. The main formula to be used is that

for any function of q, K(q), and any function of q, p , M(q, p) one has that 3

sin
1
2

[
∂

∂pK

∂

∂qM
− ∂

∂pM

∂

∂qK

]
K(q)M(q, p) =

− 1
π

∫
sin[2(p′ − p)(q′ − q)]K(q′)M(q, p′)dp′dq′ (207)

Therefore Eq. (206) can be put in the form

∂Wψ,ψ

∂t
= − p

m

∂

∂q
Wψ,ψ + 2 sin

1
2

[
∂

∂pW

∂

∂qV
− ∂

∂pV

∂

∂qW

]
V (q)Wψ,ψ(q, p, t) (208)

But we also have (trivially) that

− p

m

∂

∂q
Wψ,ψ = 2 sin

1
2

[
∂

∂pW

∂

∂qA
− ∂

∂pA

∂

∂qW

]
A(p)Wψ,ψ(q, p, t) (209)

A(p) =
p2

2m
(210)

and therefore if one defines

H(q, p) =
p2

2m
+ V (q) (211)

then we have the Moyal form of the equation of motion,

∂Wψ,ψ

∂t
= 2 sin

1
2

[
∂

∂pW

∂

∂qH
− ∂

∂pH

∂

∂qW

]
H(q, p)Wψ,ψ(q, p, t) (212)

3To change the sign of the right member to a plus, just switch the order of the differentials in the sine bracket.
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16 Example ∂u
∂t = D ∂2u

∂x2

As with the case of ordinary differential equations we will illustrate our method with specific examples.

The examples we use are the Schroeder free particle equation and the diffusion equation

∂ψ

∂t
= ia

∂2ψ

∂x2
Schroedinger free particle; a = ~/(2m) (213)

∂u

∂t
= D

∂2u

∂x2
Diffusion equation; D = diffusion coefficient (214)

We have chosen these equations because they are fundamental. In addition they are superficially

similar. We want to illustrate how these equations compare in the Wigner representation, that is, in

phase space. The Wigner distribution for the Schroeder equation has been studied for over 70 years

but we believe it has not been applied to the diffusion equation and equations of that type. The

respective momentum functions defined by

φ(p, t) =
1√
2π

∫
ψ(x, t)e−ixpdx (215)

U(p, t) =
1√
2π

∫
u(x, t)e−ixpdx (216)

satisfy the following equations of motion

∂φ

∂t
= −iap2φ (217)

∂U

∂t
= −Dp2U (218)

The Wigner distribution combines both representations, that is, it is a joint representation of position

and momentum. However, we point out a fundamental difference between the interpretation of the

solution of the Schroeder and diffusion equation. In the case of the Schroeder equation, |ψ(x, t)|2

and |φ(p, t)|2 are the densities of position and momentum. However, in the case of diffusion, u(x, t)

and U(p, t) are the densities. Thus, in the case of the Schroeder equation the Wigner distribution

satisfies the so called marginal conditions, but that is not the case for the diffusion equation. None the

less the Wigner distribution gives an indication on how momentum and position are jointly related.

More precisely one should think of the representation as a joint representation in position and spatial

frequency.

We recall the Wigner distribution for a field, u(x, t)

Wu(x, p, t) =
1
2π

∫
u∗(x− 1

2
τ, t) u(x +

1
2
τ, t)e−iτpdτ (219)

=
1
2π

∫
U∗(p +

1
2
θ, t) U(p− 1

2
θ, t)e−iθxd θ (220)

We will use ψ and u to signify the solution of Schroeder and diffusion equations respectively and use

Wψ(x, p, t) and Wu(x, p, t) for their respective Wigner distributions. When we apply our method to

the above equations we obtain
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∂Wψ

∂t
= −2pa

∂Wψ

∂x
(221)

∂Wu

∂t
=

D

2
∂2Wu

∂x2
− 2Dp2Wu (222)

Eq. (221) was first obtained by Wigner and Moyal and its properties have been studied for many

years.

It is quite interesting that, while the only difference between the two original equations, Eq. (213)

and Eq. (214), is an i, the difference in the Wigner distribution equation of motion is quite dramatic.

More importantly we will see that in the Wigner domain both the mathematics and insight become

clearer. We point out that the results we present for the Schroeder equation are classic in the work of

Wigner, Moyal, and many others, but the results we present for the diffusion equation we believe to

be new. We mention that these equations may be related to the respective Fokker-Planck equations

but that will not be pursued here.

We point out that the equation for diffusion with drift is

∂u

∂t
+ c

∂u

∂x
= D

∂2u

∂x2
(223)

and the respective Wigner equation of motion is

∂Wu

∂t
+ c

∂Wu

∂x
=

D

2
∂2Wu

∂x2
− 2Dp2Wu (224)

However, no generality is lost by taking the drift term equal to zero because if u(x, t) solves the no

drift equation, Eq. (214), then u(x − ct, t) will solve the equation with drift. Similarly, if Wu(x, p, t)

satisfies Eq. (222) then Wu(x− ct, p, t) satisfies Eq. (224).

16.1 Green’s function

Schroeder equation. Suppose we want to solve the initial value problem for the Schroeder equation.

That is, given ψ(x, 0) we want ψ(x, t), where t > 0. The solution is

ψ(x, t) =
∫

Gψ(x, x′, 0)ψ(x′, 0)dx′ (225)

where Gψ(x, x′, t) is the Green’s function,

Gψ(x, x′, t) =
1√

4πiat
exp

[
−(x− x′)2

4iat

]
(226)

In momentum space the initial value problem becomes particularly easy. From Eq. (217) we have

φ(p, t) = e−iap2tφ(p, 0) (227)
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Now consider the same problem for the Wigner distribution, that is, given W (x, p, 0) we want

W (x, p, t). From Eq. (?????) it follows that

Wψ(x, p, t) = Wψ(x− 2apt, p, 0) (228)

a result first obtained by Wigner and Moyal. Thus a remarkable simplification is achieved in phase

space. But furthermore in phase space we understand what is going on. It shows that as time

progresses the phase space point moves with a constant velocity in the x direction but does not move

at all in the p direction. The velocity in the x direction being 2ap.

Diffusion equation. Now consider the diffusion equation. Using the Green’s function approach one

has

u(x, t) =
∫

Gu(x, x′, t)u(x′, 0)dx′ (229)

where

Gu(x, x′, t) =
1√

4πDt
exp

[
−(x− x′)2

4Dt

]
(230)

and in momentum space

U(p, t) = e−Dp2tU(p, 0) (231)

Now consider the Wigner distribution. One can show that

Wu(x, p, t) =
1√

2πDt
e−Dp2t

∫
exp

[
−(x− x′)2

2Dt

]
Wu(x′, p, 0)dx′ (232)

In Figs. 19-22 we show the Wigner distribution computed at times t = 0.01, 0.1, 1, 10 respectively,

and with D = 100.

16.2 Wigner distribution of the Green’s function

It is of interest to calculate the Wigner distribution of the Green’s function for each case. For the

Schroeder case

Gψ(x, x′, t, t′) =
1√

4πiat
exp

[
−(x− x′)2

4iat

]
(233)

the Wigner distribution is (time is assumed to be positive)

WGψ
(x, p, t) =

1
2π

δ
(
x′ − x− 2apt

)
(234)

For the diffusion equation where

Gu(x, x′, t) =
1√

4πDt
exp

[
−(x− x′)2

4Dt

]
(235)

the Wigner distribution is

WGu(x, p, t) =
1√

8π3Dt
exp

[
−(x− x′)2

2Dt
− 2Dtp2

]
(236)
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Figure 19: Wigner distribution of the Green’s function for the diffusion equation, for t = 0.01.
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Figure 20: Wigner distribution of the Green’s function for the diffusion equation, for t = 0.1.
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Figure 21: Wigner distribution of the Green’s function for the diffusion equation, for t = 1.

−50

0

50

−1

−0.5

0

0.5

1
0

1

2

3

4

5

6

7

x 10
−3

xp

W
u

,u
(x

,p
,t
)

Figure 22: Wigner distribution of the Green’s function for the diffusion equation, for t = 10.
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Thus we see the Wigner distribution shows a significant physical difference between the two Green’s

functions though superficially the original wave equations and Green’s functions are very similar. In

the case of WGψ
(x, p, t), Eq. (234) shows that each spatial point gets transformed by a translation

phase space, the translation being x′ → x + 2apt. But for the case Gu(x, x′, t) we see that each point

gets spread/contracted. The position spreads but the momentum contracts!

Example. We take a specific example and we work out the two cases side by side. Take

ψ(x, 0) =
1

(2πσ2)1/4
exp

[
−(x− x0)2

4σ2
+ ip0x

]
(237)

u(x, 0) =
1√

2πσ2
exp

[
−(x− x0)2

2σ2

]
(238)

and we note that the densities in both cases are the same. The respective initial Wigner distributions

are calculated to be

Wψ(x, p, 0) =
1
π

exp
[
−(x− x0)2

2σ2
− 2σ2(p− p0)2

]
(239)

Wu(x, p, 0) =
1

2π
√

πσ
exp

[
−(x− x0)2

σ2
− σ2p2

]
(240)

Thus, initially, as expected both Wigner distributions are essentially the same. However as time

evolves

Wψ(x, p, t) =
1

2π2
exp

[
−(x− 2apt− x0)2

2σ2
− 2σ2(p− p0)2

]
(241)

Wu(x, p, t) =
e−(2Dt+σ2)p2

4π3σ
√

2Dt

∫
exp

[
−(x′ − x)2

2Dt

]
exp

[
−(x′ − x0)2

σ2

]
dx′ (242)

=
1

4π5/2

1√
2Dt + σ2

exp
[
−(x− x0)2

2Dt + σ2
− (2Dt + σ2)p2

]
(243)

where for the last step we have used
∫

e−α(x−x1)2−β(x−x2)2dx =
√

π

α + β
exp

[
− αβ

α + β
(x1 − x2)2

]
(244)

We now discuss the physical meaning. In the case of the Schroeder equations the Wigner distributions

is just rotating. However, for the diffusion case it is spreading in the x direction and contracting in

the p direction.

17 Example: diffusion: ∂u
∂t + c∂u

∂x = D ∂2u
∂x2

We show the derivation of the equation of motion for the Wigner distribution for the diffusion equation.

We work out the case of diffusion with drift,

∂u

∂t
+ c

∂u

∂x
= D

∂2u

∂x2
(245)
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where u = u(x, t) is the field, c the drift coefficient, and D the diffusion coefficient. To apply our

method we first rewrite the equation as
[

∂

∂t
+ c

∂

∂x
−D

∂2

∂x2

]
u(x, t) = 0 (246)

We now apply our method and obtain two equations for Z(x, p, t, ω)

[
At + cAx −DA2

x

]
Z(x, p, t, ω) = 0 (247)

[
Bt + cBx −DB2

x

]
Z(x, p, t, ω) = 0 (248)

Expanding the operators we have
[
1
2

∂

∂t
− iω +

c

2
∂

∂x
− icp− D

4
∂2

∂x2
+ Dp2 + iDp

∂

∂x

]
Z(x, p, t, ω) = 0 (249)

[
1
2

∂

∂t
+ iω +

c

2
∂

∂x
+ icp− D

4
∂2

∂x2
+ Dp2 − iDp

∂

∂x

]
Z(x, p, t, ω) = 0 (250)

We add the two equations in order to have a real equation for the Wigner Z(x, p, t, ω)
[

∂

∂t
+ c

∂

∂x
− D

2
∂2

∂x2
+ 2Dp2

]
Z(x, p, t, ω) = 0 (251)

This is the equation of motion for Z(x, p, t, ω). However, since ω does not appear in the equation, we

can integrate it out to obtain an equation for the standard Wigner distribution, W (x, p, t),

∂W

∂t
+ c

∂W

∂x
=

D

2
∂2W

∂x2
− 2Dp2W (252)

18 Example: Heat Equation

We consider the heat equation

a
∂2u(x, t)

∂x2
=

∂u(x, t)
∂t

(253)

where a is a real constant. We have hence

aA2
xZu,u = AtZu,u (254)

aB2
xZu,u = BtZu,u (255)

Adding and subtracting these equations we have

a
[
A2

x ±B2
x

]
Zu,u = [At ±Bt] Zu,u (256)

We choose the plus sign to obtain

a
[
A2

x + B2
x

]
Zu,u =

∂Zu,u

∂t
(257)
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But

A2
x + B2

x =
1
2

∂2

∂x2
+ 2p2 (258)

and hence we have that
a

2
∂2Zu,u

∂x2
+ 2ap2Zu,u =

∂Zu,u

∂t
(259)

Since ω does not appear in the coefficients we can integrate it out, and we obtain

a

2
∂2Wu,u

∂x2
+ 2ap2Wu,u =

∂Wu,u

∂t
(260)

An interesting issue is whether such an equation can be put into a form that is close to the Liouville

sin equation as was done with Schroedinger’s equation. This is currently being investigated.

19 Example: Burger’s Equation

For the Equation

a
∂2u(x, t)

∂x2
+

∂u(x, t)
∂t

+ c
∂u(x, t)

∂x
= 0 (261)

The same derivation as above leads to

−a

2
∂2Zu,u

∂x2
+ 2ap2Zu,u − c

∂Zu,u

∂x
=

∂Zu,u

∂t
(262)

20 Example: Wave Equation

We now consider the ordinary wave equation
[

∂2

∂x2
− 1

c2

∂2

∂t2

]
u(x, t) = f(x, t) (263)

Applying the methods developed we have that
[
A2

x −
1
c2

A2
t

] [
B2

x −
1
c2

B2
t

]
Zu,u(x, p, t, ω) = Zf,f (x, p, t, ω) (264)

Substituting the operators, expanding and collecting one has

LZu,u(x, p, t, ω) = Zf,f (x, p, t, ω) (265)
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where

L =
1
16

[
∂4

∂x4
− 1

c2

(
∂4

∂x2∂t2
+

∂4

∂t2∂x2

)
+

1
c4

∂4

∂t4

]

+
i

4c2

[
ω

∂3

∂x2∂t
− p

∂3

∂x∂t2
+ p

∂3

∂t2∂x
− ω

∂3

∂t∂x2

]

+
1
2
p2 ∂2

∂x2
− 1

c2

[
−ω2

2
∂2

∂x2
− p2

2
∂2

∂t2
+ pω

∂2

∂x∂t
+ pω

∂2

∂t∂x

]

+
1

2c4
ω2 ∂2

∂t2
+ p4 − 2

c2
p2ω2 +

1
c4

ω4

21 Classical Wave Equation

We want to apply the same method developed for the case of ordinary differential equations to the

classic wave equation [
∂2

∂x2
− 1

c2

∂2

∂t2

]
u(x, t) = f(x, t) (266)

One can prove with the same considerations used for ordinary differential equations that the equation

for the four dimensional Wigner distribution is
[
A2

x −
1
c2

A2
t

] [
B2

x −
1
c2

B2
t

]
Kψ,ψ(x, p, t, ω) = Kf,f (x, p, t, ω) (267)

However we believe that it is impossible to obtain a differential equation for the three dimensional

Wigner distribution in this case. One can convince oneself of this by attempting to do so directly by

the same methods that have been applied to the Schroeder equation. Alternatively one attempt to

get it is by integrating out ω from Eq. (267). But it is not possible to integrate out ω to obtain an

equation for W (x, p, t). This is due to the fact that the operators At and Bt contain ω.

22 Random systems

Historically, stochastic processes methods have been developed for the time-invariant stationary case.

However, typically in nature stochastic processes are nonstationary, but very little work has been

done on this case because of the difficulties involved. Nonstationary processes come about in two

general ways. First, is that the physical parameters of the process can vary in time and secondly even

for a process that is generally thought to be stationary there is a nonstationary part, the transient,

which is usually neglected, but which is very important and interesting. We believe that it is usually

neglected because proper methods have not been developed to study it. In what follows we present

a new approach that can handle nonstationary stochastic systems. We now motivate the need for

this development by examples. Many systems are described by differential equations that have a
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driving function that is random and in particular the driving function is often white noise. The

output of such systems is also “noise”, but it is generally colored noise and may be time-varying.

Such differential equations are stochastic differential equations and of course the most venerable is the

original equation of Langevin to describe Brownian motion, and also the standard Wiener process is

such a system. When the output of such differential equations is stationary, then the description is

given by the power spectrum. However, since it is generally the case that the output is nonstationary

at least for a certain interval of time, a generalization of the power spectrum is needed. We present a

method that allows one to study situations where indeed the output is nonstationary and also colored.

Using the methods presented we will study some important cases and in particular we will derive new

time-varying spectral properties of nonstationary random processes.

Suppose we have a differential equation that governs the process x(t)4

an
dnx(t)

dtn
+ an−1

dn−1x(t)
dtn−1

· · ·+ a1
dx(t)

dt
+ a0x(t) = f(t) (268)

and where f(t) is white Gaussian noise with

E[f(t)] = 0 (269)

Rf (t1, t2) = E[f(t1)f(t2)] = N0δ(t1 − t2) (270)

and where E[ ] is the ensemble averaging operator. We consider systems defined by Eq. (268) where

we take the coefficients to be constants. Our aim is to understand the spectrum of the output, x(t).

As mentioned, the spectrum will in general be colored and nonstationary. We use the Wigner-Ville

approach for describing such time-varying spectra. The Wigner distribution of a deterministic signal

x(t) is [?, ?]

Wx(t, ω) =
1
2π

∫
x∗(t− τ/2)x(t + τ/2)e−iτωdτ (271)

The Wigner-Ville spectrum of a random process x(t) is defined as the ensemble average of the Wigner

distribution of x(t) 5 [?, ?]

Wx(t, ω) =
1
2π

∫
E[x∗(t− τ/2)x(t + τ/2)]e−iτωdτ (272)

23 Nonstationary stochastic system

Our aim is to obtain the equation of motion for the Wigner spectrum for a stochastic process that is

the solution of an ordinary stochastic differential equation

an
dnx(t)

dtn
+ an−1

dn−1x(t)
dtn−1

· · ·+ a1
dx(t)

dt
+ a0x(t) = f(t) (273)

4We use bold symbols for stochastic quantities.
5We use the following simplified notation

∫ ≡ ∫ +∞
−∞
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where f(t) is a given stochastic process. One could solve this equation for x(t) and then find the

ensemble average as needed to calculate the Wigner spectrum in Eq. (272), and then do the integration

as required. This is generally a difficult procedure. We have developed a method that is more direct:

we obtain the equation of evolution for the Wigner spectrum and solve it [?, ?, ?, ?]. To accomplish

that we write the differential equation in polynomial form

P (D)x(t) = f(t) (274)

where, as usual, D and P (D) are respectively

D =
d

dt
(275)

P (D) = anDn + an−1D
n−1... + a1D + a0 (276)

The differential equation for the Wigner spectrum Wx(t, ω), of x(t), is then given by

P ∗(A)P (B)Wx(t, ω) = W f (t, ω) (277)

where

A =
1
2

∂

∂t
− iω ; B =

1
2

∂

∂t
+ iω (278)

For the case of time dependent coefficients

an(t)
dnx(t)

dtn
+ an−1(t)

dn−1x(t)
dtn−1

+ . . . + a1(t)
dx(t)

dt
+ a0(t)x(t) = f(t) (279)

where a0(t), . . . , an(t) are time-varying deterministic coefficients. We rewrite Eq. (279) in polynomial

notation

P (D, t)x(t) = x(t) (280)

where now

P (D, t) = an(t)Dn + an−1(t)Dn−1 + . . . + a1(t)D + a0(t) (281)

The equation for the Wigner spectrum is

P ∗(A, E)P (B,F)Wx(t, ω) = W f (t, ω) (282)

Eq. (282) is a partial differential equation in time and frequency.

24 Example: The Nonstationary Wiener Process

We now apply our method to the Wiener process [?]

dx(t)
dt

= f(t) (283)
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with initial conditions x(0) = x0, where x0 is a stochastic variable. We will turn the system on at a

finite time and hence we will obtain the complete solution of the problem. That is we will get the total

solution, including the transient behavior. First we point out that for Eq. (283) the power spectrum

is given by

Px(ω) =
N0√
2π

1
ω2

(284)

It is important to appreciate that the 1/ω2 spectrum for the Wiener process is reached in either of

two different ways:

1. The initial condition is set to zero at t = 0 and by taking t = ∞ in the general solution of Eq.

(283);

2. Alternatively by setting the initial condition to zero at t = −∞ and this has the effect of the

passage of an infinite amount of time.

For both types of initial conditions the stationary spectrum is reached because an infinite amount

of time has passed. Using our method we will obtain the full solution, that is the full evolution of the

instantaneous spectrum. Rewriting Eq. (283) in the polynomial form of Eq. (274)

Dx(t) = f(t) (285)

and using Eq. (277) we obtain

ABWx(t, ω) = W f (t, ω) (286)

Using the definitions of the operators we have that

AB =
1
4

∂2

∂t2
+ ω2 (287)

and hence
1
4

∂2Wx(t, ω)
∂t2

+ ω2Wx(t, ω) = W f (t, ω) (288)

where W f (t, ω) is the Wigner spectrum of f(t). If f(t) is white Gaussian noise with autocorrelation

Rf (τ) = N0δ(τ) (289)

then one can readily show that

W f (t, ω) =
N0

2π
(290)

and hence
1
4

∂2Wx(t, ω)
∂t2

+ ω2Wx(t, ω) =
N0

2π
(291)

The exact solution to Eq. (291) is

Wx(t, ω) =
N0

2πω2
[1− cos 2ωt] +

E[x2
0]

πω
sin 2ωt, t ≥ 0 (292)
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Figure 23: The instantaneous spectrum of the Wiener process defined in Eq. (283). The spectrum

grows to infinity at ω = 0 and reaches the singularity in the classical frequency spectrum that has a

1/ω2 distribution. Notice that the Wigner spectrum, given in Eq. (293), is nonnegative.

and Wx(t, ω) ≡ 0 when t < 0. For E[x2
0] = 0 one has

Wx(t, ω) =
N0

2πω2
[1− cos 2ωt] =

N0

π

sin2 ωt

ω2
(293)

In Fig. 23 we show the transient of the Wiener process.

It is interesting to note that for ω → 0

lim
ω→0

Wx(t, ω) = lim
ω→0

N0

2πω2
[1− cos 2ωt] =

N0

π
t2 (294)

and hence at ω = 0 the instantaneous spectrum grows to infinity and approaches the singularity in

the classical power spectrum of Eq. (284) with a second order in time.

24.1 Direct Solution

We now show how to obtain the same solution by the direct method which is essentially a brute force

method. The Wiener equation is first rewritten as

dx(t)
dt

= u(t)f(t) (295)
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where u(t) is the Heaviside step function, defined as

u(t) =
0, t < 0

1 t ≥ 0
(296)

The use of the step function makes the calculation much easier. Now, we write the solution to Eq.

(295) as

x(t) = u(t)
[
x0 +

∫ t

0
u(t′)f(t′)dt′

]
(297)

To obtain the Wigner spectrum we will make use of the following relation of the Wigner spectrum

with the autocorrelation function, Rx(t1, t2),

Wx(t, ω) =
∫

Rx(t + τ/2, t− τ/2)e−iτωdτ (298)

Hence, we need to evaluate the autocorrelation directly

Rx(t1, t2) = E[x(t1)x∗(t2)] (299)

= u(t1)u(t2)
[
E[x2

0] +
∫ t1

0

∫ t2

0
Rf (t′1, t

′
2)dt′1dt′2

]
(300)

where the cross-terms have disappeared because E[f(t)] = 0. By substituting Rf (t′1, t
′
2) from Eq.

(270) one obtains

Rx(t1, t2) = u(t1)u(t2)min(t1, t2) (301)

Now, one applies Eq. (298) to obtain

Wx(t, ω) =
∫

u(t + τ/2)u(t− τ/2)
(
min(t + τ/2, t− τ/2) + E[x2

0]
)
e−iτωdτ (302)

and after some manipulation and simplification (shown in the next Section) one has

Wx(t, ω) =
N0

2πω2
[1− cos 2ωt] +

E[x2
0]

πω
sin 2ωt, t ≥ 0 (303)

which is precisely Eq. (292). We note that Wx(t, ω) ≡ 0 for negative times.

24.2 Direct derivation of the Wiener process

We now give the details of the derivation of the direct approach leading to Eq. (272). We start from

Eq. (299). By substituting Eq. (270) into Eq. (300) we have

Rx(t1, t2) = u(t1)u(t2)
[
E[x2

0] +
∫ t1

0

∫ t2

0
N0δ(t′1 − t′2)dt′1dt′2

]
(304)

Now, if t1 < t2 we have that

Rx(t1, t2) = u(t1)u(t2)
[
E[x2

0] + N0t1
]

(305)
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while if t2 < t1

Rx(t1, t2) = u(t1)u(t2)
[
E[x2

0] + N0t2
]

(306)

which can be combined into one expression,

Rx(t1, t2) = u(t1)u(t2)
[
E[x2

0] + N0 min(t1, t2)
]

(307)

Also, it is convenient to write,

Rx(t1, t2) = u(t1)u(t2)
[
E[x2

0] + N0 (u(t1 − t2)t2 + u(t2 − t1)t1)
]

(308)

Now we apply Eq. (298) that links the autocorrelation to the Wigner spectrum

Wx(t, ω) =
E[x2

0]
2π

∫
u(t + τ/2)u(t− τ/2)e−iτωdτ

︸ ︷︷ ︸
I1

+ (309)

N0

2π

∫
u(t + τ/2)u(t− τ/2)u(τ)(t− τ/2)e−iτωdτ

︸ ︷︷ ︸
I2

+ (310)

N0

2π

∫
u(t + τ/2)u(t− τ/2)u(τ)(t + τ/2)e−iτωdτ

︸ ︷︷ ︸
I3

(311)

We solve the three integrals separately. Starting with the first, we have that

I1 = u(t)
E[x2

0]
2π

∫ 2t

−2t
e−iτωdτ (312)

= u(t)E[x2
0]

sin 2tω

πω
(313)

For the second

I2 = u(t)
N0

2π

∫ 2t

0
(t− τ/2)e−iτωdτ (314)

which after a few calculations becomes

I2 = u(t)
N0

2π

[
t
1− e−i2tω

iω
− 1

2

[
e−i2tω

(
1
ω2

− 2t

iω

)
− 1

ω2

]]
(315)

With a similar procedure one has that

I3 = u(t)
N0

2π

∫ 0

−2t
(t + τ/2)e−iτωdτ (316)

= u(t)
N0

2π

∫ 2t

0
(t− τ/2)eiτωdτ (317)

which evaluates to

I3 = u(t)
N0

2π

[
t
1− e−i2tω

iω
− 1

2

[
ei2tω

(
1
ω2

+
2t

iω

)
− 1

ω2

]]
(318)
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Note that

I2 + I3 = u(t)
N0

2πω2
[1− cos 2tω] (319)

and now adding to I1 we obtain

Wx(t, ω) = u(t)
[

N0

2πω2
[1− cos 2ωt] +

E[x2
0]

πω
sin 2ωt

]
(320)

which is Eq. (303) of the text. We note that the phase space method used before is much easier.

25 Example: The full exact solution to the Langevin Equation

Our aim is to show how to find the transient spectrum of the Langevin equation

dv(t)
dt

+ βv(t) = f(t) (321)

where f(t) is white Gaussian noise. We apply our method by first rewriting the Langevin equation in

polynomial form

[D + β]v(t) = f(t) (322)

Using our method the equation for the Wigner spectrum is now

[A + β][B + β]Wx(t, ω) = W f (t, ω) (323)

We substitute for the operators A and B from Eq. (278) to obtain

1
4

∂2

∂t2
Wx(t, ω) + β

∂

∂t
Wx(t, ω) + (β2 + ω2)Wx(t, ω) = W f (t, ω) (324)

where W f (t, ω) is the Wigner spectrum of the input random process f(t).

The solution to Eq. (324) can be found with the standard methods for differential equations. It is

W v(t, ω) =
1
π

(
E[v2

0]−
N0

2β

)
e−2βt sin 2ωt

ω
+

N0

2π

1
β2 + ω2

− N0

2π

e−2βt

β2 + ω2
(cos 2ωt− ω/β sin 2ωt) ; t ≥ 0 (325)

and where W v(t, ω) ≡ 0 for negative times. In the solution we are considering a random initial

condition v0, that is

v(0) = v0 (326)

This solution allows us to understand the transient behavior of the Langevin equation. In Fig.

24 we show a typical case. We see that the instantaneous spectrum has an overshoot effect at the

beginning of the transient. Also the spread of the solution is larger for small times. Then the

solution rapidly approaches the stationary spectrum, the well known Lorentzian distribution. The
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Figure 24: The complete instantaneous spectrum of Brownian motion, given in Eq. (325). Notice the

overshoot at the beginning of the transient, and the increased spread of the Wigner spectrum. As

t → ∞ the Wigner spectrum reaches the stationary solution, that is the Lorentzian distribution of

Eq. (327).
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behavior of the frequencies in the transient suggests the possibility of designing systems so to have

smooth transitions of the instantaneous spectrum from zero to the stationary solution. This can be

a fundamental issue in minimizing the electromagnetic interference of an electronic device that is

suddenly turned off, or in reducing the risk of breaking down an engine or a vibrating structure by a

sudden rough start. These two physical situations are just an example of the importance of transients

in designing and understanding a physical systems. We note that as time goes to infinity we have that

lim
t→0

W v(t, ω) =
N0

β2
0 + ω2

(327)

which is the classical Wang-Uhlenbeck result.

26 Example: Quantum Langevin Equation

The quantum Langevin equation is

m
d2x(t)

dt2
+ mβ

dx(t)
dt

+ V ′(x) = ξ(t) (328)

where x is the position operator, V (x), the external potential, and ξ(t) is the noise operator that

satisfies
〈
[ξ(t), ξ(t′)]+

〉
=

γ~
π

∫ ∞

−∞
ωeiω(t−t′) coth

~ω
2kT

dω (329)

If one considers Eq. (328) as a classical type equation then it is called the quasi-classical Langevin

equation. In such a case one replaces the operators by ordinary variables

m
d2x(t)

dt2
+ mβ

dx(t)
dt

+ V ′(x) = ξ(t) (330)

and the autocorrelation function is then

R(τ) =
γ~
2π

∫ ∞

−∞
ωeiωτ coth

~ω
2kT

dω (331)

We consider here the case of no external potential and rewrite Eq. (328) as

ṗ(t) + βp(t) = ξ(t) (332)

with

Rξ(τ) = 2DZ

∫ ∞

−∞
ωeiωτ cothZωdω (333)

and

Z =
~

2kT
(334)

Using the standard Wiener-Khinchen theorem the power spectrum is given by

Sξ(ω) = 2DZω cothZω (335)
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We note that as Z → 0

lim
Z→0

Rξ(τ) = 2Dδ(τ) (336)

Using our general approach we have that the differential equation for the Wigner spectrum is
[
1
4

∂2

∂t2
+ β

∂

∂t
+ β2 + ω2

]
W p(t, ω) =

DZ

π
ω cothZω (337)

The exact solution is

W p(t, ω) =
Wξ

β2 + ω2

[
1− e−

2γ
m

t cos 2ωt
]

(338)

=
1

β2 + ω2

DZ

π
ω cothZω

[
1− e−

2γ
m

t cos 2ωt
]

(339)

We see that Eq. (339) can now be thought of as the generalization of the Wang and Uhlenbeck process

for quantum noise.

The quantum Wiener process is obtained by taking γ = 0 and hence the differential equation is

ṗ(t) = ξ(t) (340)

The governing equation is

1
4

∂2W p(t, ω)
∂t2

+ ω2W p(t, ω) =
DZ

π
ω cothZω (341)

giving

Wp(t, ω) =
DZ

π
ω cothZω(1− cos 2ωt) (342)

=
2DZ

π
ω cothZω sin2 ωt (343)

27 Example: Time-variant random systems

In many physical situations a random process can be seen as the output of a random system whose

parameters change with time. The variation can be due to a sudden breakdown, aging, or cyclic vari-

ations of temperature, humidity, and other physical quantities that can influence the system behavior.

In these cases the process is inherently nonstationary.

We now consider the case addressed by a time-dependent Brownian motion process

dv(t)
dt

+ β(t)v(t) = f(t) (344)

We rewrite it in polynomial notation

[D + β(t)]v(t) = f(t) (345)
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where we take β(t) to be time-dependent with a linear law

β(t) = β0 + εt (346)

and also we take ε ¿ 1. These conditions imply a slow variation with time. We now transform the

equation in time to an equation in time-frequency, using Eq. (282) to obtain
[
1
4

∂2

∂t2
+

ε2

4
∂2

∂ω2
+ β(t)

∂

∂t
+ εω

∂

∂ω
+ β2(t) + ω2

]
W v(t, ω) =

N0

2π
(347)

Taking into account that ε is small, we neglect the terms containing ε,
[
1
4

∂2

∂t2
+ β(t)

∂

∂t
+ β2(t) + ω2

]
W v(t, ω) =

N0

2π
(348)

Since there are no derivatives with respect to ω, we can solve this equation as an ordinary differential

equation with respect to time. We have to choose the initial conditions, which we fix using the

following reasoning. We assume that the system was started at −∞ with β = β0 and hence it has

reached equilibrium. At t = 0 we turn on the time dependence as given by Eq. (346). Therefore the

initial conditions to Eq. (348) are

W v(0, ω) =
N0

β2
0 + ω2

(349)

∂

∂t
W v(t, ω) = 0, t = 0 (350)

The first initial condition, Eq. (349), is the Wigner spectrum of the stationary solution. This

stationary distribution has been reached because an infinite amount of time has passed since the

system was turned on at t = −∞. As a consequence of being in a stationary phase before t = 0 there

must be no change in time of the instantaneous spectrum. This condition is stated by Eq. (350).

Using these initial conditions Eq. (348) can be easily solved with numerical algorithms. In Fig.

25 we plot the solution W v(t, ω). In Fig. 26 a numerical simulation of the Wigner spectrum is shown.

The agreement confirms our approach.

The behavior of the instantaneous spectrum is in accordance with intuition. The shape of the

Wigner spectrum is in fact very similar to a Lorentzian distribution, for any given time. A similarity

with the lowpass filter represented by the RC circuit can be used to explain the change in spread that

the instantaneous spectrum exhibits. An RC circuit driven by white noise has the same equation of

Brownian motion. In this case we can think of a time-varying RC circuit, where the time constant

τ = RC is a function of time, τ = τ(t). It is well known that when τ is large, the RC filter has a strong

lowpass behavior, which corresponds to a small spread of the Lorentzian spectrum. On the contrary,

when τ is small, the RC circuit has a weak lowpass behavior. Since the time constant is related to the

β coefficient by an inverse proportionality, the increase of the β coefficient, which we assumed for our

case, turns out to be a decrease of the τ constant. Therefore we expect the time-varying system under

study to become a weaker lowpass filter as time goes by, which is precisely what happens in Fig. 25.
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Figure 25: Approximated Wigner spectrum of a time-varying Brownian motion.
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Figure 26: Simulated Wigner spectrum of a time-varying Brownian motion.
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28 Example: oscillator with constant coefficients

We consider the case of a harmonic oscillator with constant coefficients and random Gaussian noise

as input,
d2x

dt2
+ 2µ

dx

dt
+ ω2

0x = f(t) (351)

where we choose a Gaussian noise f(t) with zero mean and autocorrelation Rf (τ) = N0δ(τ). Our

intention is to study how the frequency in the random output x(t) of the systems are distributed in

time, that is the instantaneous power spectrum as defined by the Wigner spectrum. Of course for

this case we expect the spectrum to be constant in time. First we consider the problem by standard

methods and then apply our method and compare. Subsequently we consider the problem where we

make one of the constants time dependent, and of course the standard method can not deal with that

situation.

28.1 Standard result

We recall the standard result for the classical power spectrum Gx(ω) of x(t), defined as usual as the

Fourier transform of the autocorrelation function Rx(τ)

Gx(ω) = |H(ω)|2 Gf (ω) (352)

where H(ω) is the transfer function of the system, simply obtained by evaluating the polynomial

version of Eq. (268) in iω, that is

H(ω) = P (iω) (353)

(Notice that with constant coefficients the polynomial is not a function of time anymore). Since the

power spectrum of the Gaussian noise is constant and equal to Gf (ω) = N0, we obtain from Eqs.

(352)-(353)

Gx(ω) =
N0

(ω2
0 − ω2)2 + 4µ2ω2

(354)

This is the result obtained by Wang and Uhlenbeck [?]. In Fig. 27 we represent the obtained power

spectrum Gx(ω) when the following set of parameters is chosen

µ = 1 (355)

ω0 = 2π (356)

N0 = 1 (357)
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Figure 27: Power spectrum of the state variable x(t) of the harmonic oscillator of Eq. 351. Notice

the bandpass behavior of the function.

We point out the bandpass behavior of the power spectrum, that selectively filters the input frequencies

contained in the random noise f(t).

28.2 Wigner spectrum

We now obtain the equation for the Wigner spectrum by applying our method. We rewrite Eq. (351)

in polynomial notation

[
D2 + 2µD + ω2

0

]
x(t) = f(t) (358)

and we apply the transformation to the Wigner spectrum domain, having

[
A2 + 2µA + ω2

0

] [
B2 + 2µB + ω2

0

]
Wx(t, ω) = W f (t, ω) (359)

This is a partial differential equation of fourth order, that can be written in the following general way

[
b4

∂4

∂t4
+ b3

∂3

∂t3
+ b2

∂2

∂t2
+ b1

∂

∂t
+ b0

]
Wx(t, ω) = W f (t, ω) (360)

One can show that the coefficient b0 is inversely proportional to the square modulus of the transfer

function

b0 =
(
|H(ω)|2

)−1
(361)
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This means that in general Eq. (360) can be written as

[
b4

∂4

∂t4
+ b3

∂3

∂t3
+ b2

∂2

∂t2
+ b1

∂

∂t
+

(
|H(ω)|2

)−1
]

Wx(t, ω) = W f (t, ω) (362)

As can be easily seen, the Wigner spectrum of white noise is a (two-dimensional) constant function

W f (t, ω) = N0 (363)

We then use this result in Eq. (362) and we solve the equation as prescribed by our method, that

means we look for the solution that is the convolution of the Green’s function with the input function.

This solution is seen to be constant with respect to time, and in particular

Wx(t, ω) = N0 |H(ω)|2 (364)

Surprisingly, we obtain the same solution as in the case of the classical power spectrum. But there

is the important difference that here we are evaluating a function of time and frequency. The result

obtained means that the instantaneous power spectrum of the solution x(t) is constant in time. A

simple and intuitive explanation of this conclusion can be given by considering Eq. (351) as a filtering

problem. In this perspective what the system does is filter the input noise f(t) with a bandpass

filter to produce an output signal x(t). But since both the input random noise and the filter/system

are stationary in time, then also the output is stationary. This stationary is contained in the time-

invariant property of the instantaneous power spectrum Wx(t, ω). Also it can be easily noticed that

the property obtained in Eq. (364) is valid for any system defined by Eq. (268).

29 Example: Harmonic oscillator with time dependent coefficients

We now consider a time-variant harmonic oscillator described by the following differential equation

d2x

dt2
+ 2µ

dx

dt
+ K(t)x = f(t) (365)

where

K(t) = ω2
0 + εt, ε ¿ 1 (366)

This is a slightly perturbed version of the standard harmonic oscillator that shows though a basic

time-varying behavior. Our intention is to study the system in the time interval 0 ≤ t ≤ T , where T

is large enough to show a variation in the K(t) coefficient. In particular we choose

K(T ) = 4K(0) = 4ω2
0 (367)
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The equation for the Wigner spectrum is

[
A2 + 2µA + K(E)

] [
B2 + 2µB + K(F )

]
Wx(t, ω) = W f (t, ω) (368)

This equation is a partial differential equation with varying coefficients, that cannot be solved as an

ordinary differential equation (there are derivatives with respect to ω). But if we take into account

the fact that K(t) is slowly varying, we can approximate it by

[
1
16

∂4

∂t4
+

µ

2
∂3

∂t3
+

(
µ2 +

1
2

(
K(t) + ω2

)) ∂2

∂t2

+2µ
(
K(t) + ω2

) ∂

∂t
+

(
K(t)− ω2

)2 + 4µ2ω2

]
Wx = W f (369)

This is again a partial differential equation but contains no derivatives with respect to ω and can hence

be solved as an ordinary differential equation. The only other issue is to set proper initial conditions

at t = 0. Since the system is slowly time-varying, due to the fact that ε is very small, we suppose

that its instantaneous spectrum will be slowly varying. If this is the case, then the instantaneous

spectrum at t = 0, when K(t = 0) = ω2
0, will not be very different from the instantaneous spectrum

of the stationary system that has always K(t) = ω2
0 (the one analyzed in Sect. 28). Following this

approximation we choose

Wx(0, ω) =
N0(

ω2
0 − ω2

)2 + 4µ2ω2
(370)

∂Wx

∂t
(0, ω) =

∂2Wx

∂t2
(0, ω) =

∂3Wx

∂t3
(0, ω) = 0 (371)

The solution of Eq. (369) with the set of initial conditions given in Eqs. (370)-(371) can be

obtained analytically using a power series expansion. In Fig. 28 we represent this solution, that has

been instead obtained with a standard numerical integration method. This is necessary since the

domain of integration is large and the power series solution should be computed for too many terms,

far beyond the machine precision. (The problem can be handled with a symbolic program but here

we use a numerical integration scheme because of its easy and robust implementation).

It is very important to notice that the computed Wigner spectrum Wx(t, ω) looks exactly as we

expected. It is basically a bandpass spectrum as in Fig. 352 with a time-varying central frequency.

Also the amplitude of the spectrum changes in time, and the reason is that this is embedded in the

equation defining the time-varying harmonic oscillator, Eq. (365). The smooth transition between the

initial spectrum at t = 0 and the final spectrum at t = T is a consequence of the small value of the ε
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Figure 28: Wigner spectrum of the solution x(t) to Eq. 365.

parameter, that makes K(t) = ω2
0 + εt a slowly varying function. Now the crucial step is to compare

this result that satisfies our intuition with the estimated Wigner spectrum obtained by simulation.

This is done in Sect. 29.1.

29.1 Comparison with simulations

To check the validity of the solution shown in Fig. 28, we compare it with the estimated time-varying

spectrum obtained by simulation. We first solve Eq. (365) with a scheme that is valid for a stochastic

differential equation (e.g. an Euler scheme), and we thus obtain an approximation to x(t). Then we

estimate the instantaneous power spectrum Px(t, ω) with a sliding estimator method. This method

consists in truncating the signal with a moving window, and then estimating the power spectrum at

that time with a standard technique. Here a parametric ARMA estimator has been used, since we

know that the truncated signal is coming from a second order differential equation. In Fig. 29 we

show the result of such estimation. It can be noticed that our approximation, shown in Fig. 28 and

the estimated spectrum are very close to each other. In particular Fig. 29 shows again the bandpass

behavior that we were expecting from an intuitive point of view and that our approximation confirmed.
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Figure 29: Numerical estimation of the Wigner spectrum of the solution to Eq. (365). Notice the qual-

ity of the approximation obtained in Fig. 28 that fits in an excellent way the estimated instantaneous

spectrum.
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30 Clouds

The study of cloud coverings is important for many reasons, among them is that we want to remove

the clouds from images. Our aim is to understand certain aspects of clouds in regard to their statistical

properties. Considering a cloud as a signal we ask where in the Fourier transform is the cloud-like

information stored. In particular, is it in the spectral amplitude or spectral phase? The reason this is

important is that by understanding this issue it may help in designing methods for the denoising of

clouds, that is, methods that eliminate cloud coverings [?, ?]. The idea of studying the relative impor-

tance of spectral amplitude and phase of a signal originated with the classical paper by Oppenheim

and Lim [?] and subsequently many studies have been made.

We will start by studying these issues on artificially generated clouds.

30.1 Generation of clouds

For a two dimensional image, s(x, y), we write its Fourier spectrum as

F (ωx, ωy) =
∫ ∫

s(x, y)e−ixωx−iyωydxdy (372)

and consequently the power spectrum is given by

Ps(ωx, ωy) = |F (ωx, ωy)|2 (373)

One way of generating cloud-like images is by using the fact that their Fourier power spectrum is

of the type

Ps(ωx, ωy) =
1(√

ω2
x + ω2

y

)2γ (374)

where γ is a parameter that controls the cloud-like appearance of the image. This type of power

spectra is observed in natural clouds [?, ?, ?, ?]. When one wants to generate artificial clouds it is

hence reasonable to use Eq. (374) as a model for the numerical algorithm. A fast method to generate

clouds is due to Perlin [?]. We instead use a direct implementation since we are not limited by time

considerations. One generates a cloud s(x, y) by filtering white noise, N(x, y), with a filter whose

shape in the frequency domain has the form given by Eq. (374),

Hγ(ωx, ωy) =
1(√

ω2
x + ω2

y

)γ (375)

where Hγ(ωx, ωy) is the transfer function of the linear filter. In particular, we start with white noise

where the power spectrum is constant

PN (ωx, ωy) = N0 (376)
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and form the power spectrum of the cloud by way of

Ps(ωx, ωy) = |Hγ(ωx, ωy)|2 PN (ωx, ωy) (377)

Then, the cloud is given by

s(x, y) =
∫∫

hγ(x− x′, y − y′)N(x′, y′)dx′dy′ (378)

where hγ(x, y) is the impulse response of the filter. In this way the output power spectrum of the

cloud will be the same type as in Eq. (374).

In Fig. 1 we show several clouds generated with this method. In every of the five pictures we

change the value of the spectral amplitude γ, and we obtain different “types” of clouds. In particular

in Fig. 1a we have γ = 0, that is we generate white noise without any filtering. Then in Fig. 1b with

γ = 0.5 we begin observing a less uniform pattern in the generated image, and in Fig. 1c and Fig. 1d

obtained respectively with γ = 1 and γ = 1.5 we have the more cloud-like aspect of natural clouds.

Fig. 1e with γ = 2 gives an image resembling natural clouds quite well. Fig. 1f, with γ = 5, shows

that at the limit the generated images are very clustered.
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Fig. 1a. γ = 0.
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Fig. 1b. γ = 0.5.
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Fig. 1c. γ = 1.
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Fig. 1d. γ = 1.5.
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Fig. 1e. γ = 2.
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Fig. 1f. γ = 5.

30.2 Relative phase-amplitude importance

We write the Fourier transform in terms of its amplitude and phase

F (ωx, ωy) = A(ωx, ωy)eiΦ(ωx,ωy) (379)

To study the relative importance of spectral amplitude and phase we use the idea of Oppenheim and

Lim and reconstruct the image using phase and/or amplitude only to see the relative importance.

In fact we take a somewhat more general approach. We define a modified Fourier transform by the
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following

Fαβ(ωx, ωy) = Aα(ωx, ωy)eβΦ(ωx,ωy) (380)

and reconstruct the modified image by

sαβ(x, y) =
∫ ∫

Fαβ(ωx, ωy)eixωx+iyωydωxdωy (381)

In Equation (381) α and β are parameters and by varying α and β we can ascertain the relative

importance of phase and amplitude. In particular if we take α = 0 and β = 1 then we are reconstructing

phase only images, and if we take β = 0 and α = 1 then it is amplitude only images. Our aim is

to take a particular cloud and reconstruct it by the above procedure with a variety of values of α

and β with the expectation that visual inspection will give us some indication where the cloud-like

information resides, amplitude or phase.

In Fig. 2 we show amplitude only and phase only reconstruction of the first five clouds of Fig.

1. In particular, in the first column of the figure are the original images. Column two represents

amplitude only reconstruction and column three represents phase only reconstruction. In terms of the

model given in Sect. 30.1. when we reconstruct the image from the amplitude we take α = 1 and

β = 0, while the image reconstructed from the phase content has α = 0 and β = 1. From a study of

Fig. 2, it is reasonable to conclude that both amplitude and phase are important for the reproduction

of the original image.

In Fig. 3 we have taken the image of the realistic cloud case, namely the one where γ = 2 in

Fig. 1, and varied α and β as described in Section 3. In the first column the original phase is kept

(β = 1) and the amplitude significance is varied according to α = 0, 0.2, 0.4, 0.6, 0.8, 0.95. In the

second column the amplitude is kept fixed (α = 1) and the relative importance of the phase is varied

by taking β = 0, 0.2, 0.4, 0.6, 0.8, 0.95. Also Fig. 3 proves that both amplitude and phase are

important to generate realistic clouds.
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30.3 The 1/f model for cloud generation

In the previous sections we have considered a cloud as a signal and we have investigated where in the

Fourier transform is the cloud-like information stored, that is in the spectral amplitude or spectral

phase. We will now study the generation of clouds from a different perspective, that is we generalize

the algorithm that we have used before by using a stochastic fractional differential equation model.

In particular we study these issues on artificially generated clouds.
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It is generally argued that clouds have an 1/f spectra, and it has been well known that this can

be used to generate clouds. We will investigate whether this is indeed true, in the sense that do other

spectra also generate clouds, or must there be an 1/f behavior in the spectra?

The 1/f approach to generate clouds assumes that the power spectra of the generated cloud is of

the form

P (ωx, ωy) =
1(√

ω2
x + ω2

y

)2γ (382)

where γ is the 1/f parameter that controls the cloud like appearance of the image. We generated a

cloud s(x, y) by filtering white noise, N(x, y), with a filter whose shape in the frequency domain has

the form

Hγ(ωx, ωy) =
1(√

ω2
x + ω2

y

)γ (383)

=
1
ωγ

(384)

where Hγ(ωx, ωy) is the transfer function of the linear filter and

ω =
√

ω2
x + ω2

y (385)

In particular, we started with white noise where

PN (ωx, ωy) = N0 (386)

and formed the power spectrum of the cloud by

Ps(ωx, ωy) = |Hγ(ωx, ωy)|2 PN (ωx, ωy) (387)

=
N0(√

ω2
x + ω2

y

)2γ (388)

The cloud is then given by

s(x, y) =
∫∫

hγ(x− x′, y − y′)N(x′, y′)dx′dy′ (389)

where hγ(x, y) is the impulse response of the filter. Eq. (387) has the power spectrum given by Eq.

(374).

In Fig. 4 we reproduce some clouds generated by this method with various parameters. We point

out that for every picture we are using a two-dimensional transfer function that has a radial symmetry,

and H(ω) given in Eq. (390) is precisely the value of that transfer function at any angle from the

reference point of the image (located in the middle of the image), and at the radius value ω.
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30.4 Other Power Spectra for the Generation of Clouds

Our aim is to investigate whether indeed only 1/f power spectra generates cloud like images. Towards

that end we first consider spectra formed by the process described above but where we take the transfer

function to be of the form

H(ω) =
1

(iω)γ + (iω)δ
(390)

This produces a power spectrum given by

Ps(ωx, ωy) =
∣∣∣∣

1
(iω)γ + (iω)δ

∣∣∣∣
2

(391)

=
1

ω2γ + ω2δ + [(−1)δ + (−1)γ)iγ+δωγ+δ
(392)

=
1

ω2γ + ω2δ + 2ωγ+δ cos [π/2(γ − δ)]
(393)

We also consider transfer functions of the following form

H(ω) =
1

ωγ + iωδ
(394)

in which case the power spectrum is

Ps(ωx, ωy) =
∣∣∣∣

1
ωγ + iωδ

∣∣∣∣
2

(395)

=
1

ω2γ + ω2δ
(396)

We emphasize that this power spectrum is not the power spectrum of the sum of two 1/f power

spectra. If γ and δ differ by multiples of π, then clearly Eq. (391) and Eq. (395) are the same power

spectrum. To generate the cloud we use the procedure described in Sect. 30.5. Namely, we generate

white noise and construct the cloud as before, but we use for the transfer function Eq. (390) and Eq.

(394). In the next section we give the results we obtained by varying γ and δ.

30.5 Differential Equation Approach

We point out that one can formulate these types of processes and procedures as fractional differential

equations. Consider the following fractional differential equation

Dγx(t) + Dδx(t) = F (t) (397)

where Dγ is called the fractional derivative when γ is not an integer. There are many possible

definitions of fractional derivative. Here we use the Weil definition [?]

Dγx(t) =
1

Γ(γ)

∫ t

−∞
(t− t′)γ−1x(t′)dt′ (398)
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When γ is an integer, say γ = n, this reduces to the n-the derivative of x(t). In Eq. (397) F (t) can

be any function but here we take it to be white Gaussian noise.

Now consider the Fourier transform of both sides of the differential equation. We define the

Fourier transform G(ω) of a function g(t) by

G(ω) = F [g(t)] =
1√
2π

∫
g(t)e−iωtdt (399)

Also we define X(ω) to be the Fourier transform of x(t)

X(ω) = F [x(t)] (400)

Now one can show that

F [Dγx(t)] = (iω)γF [x(t)] = (iω)γX(ω) (401)

and therefore taking the Fourier transform of both sides we have that

F [Dγx(t) + Dδx(t)] = F [F (t)] (402)

or

(iω)γX(ω) + (iω)δX(ω) = F [F (t)] (403)

giving

X(ω) =
F [F (t)]

(iω)γ + (iω)δ
(404)

Thus we see that the transfer function is equal to

H(ω) =
1

(iω)γ + (iω)δ
(405)

that is Eq. (390).

For the transfer function given by Eq. (394) consider the following fractional differential equations,

i−γDγx(t) + i1−δDδx(t) = F (t) (406)

For this equation using the same procedure as above we have that

X(ω) =
F [F (t)]
ωγ + iωδ

(407)

We note that for fractional derivatives, just as for ordinary derivatives, we have that

Dγ [ax(t)] = aDγx(t) (408)

where a is an arbitrary constant.

We first discuss the results for the first transfer function, Eq. (390), which produces the power

spectra given by Eq. (391). In Figs. 2a, 2b and 2c we show the pictures obtained by using all the
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combinations of γ and δ ranging in the values 0.01, 0.5, 1, 1.5 and 2. The symmetric combinations

like (γ, δ) = (1, 2) and (γ, δ) = (2, 1) have been avoided, since they clearly generate identical fractional

equations and hence processes x(t), as can be seen from Eq. (397). The rows show the values

γ = 2, 1.5, 1, 0.5, 0.01 (in descending order), while the columns are associated to δ = 2, 1.5, 1, 0.5, 0.01

(from left to right). Similar results have been obtained in Figs. 3a-3d, where we have used the transfer

function given by Eq. (394). All the possible combinations of γ and δ used in the previous case have

been considered, except γ = δ = 0.01, which corresponds to white noise, already shown in Fig. 2c.

Clearly there are many values of the parameters that generate cloud like pictures and hence we have

to conclude that it is not the case that clouds must have an 1/f spectra.

We now address the general issue of 1/f spectra. It has often been said that many things in nature

have 1/f spectra, examples being clouds, speech, natural scenes, etc. and that this is a fundamental

characteristic. The definition of 1/f spectra often gets extended to mean 1/fγ . We are currently

studying the issue as to what is common about the spectra that produce cloud like images. We specu-

late that what is going on is the following. First, we point out that if the autocorrelation function is of

such a nature that there is no correlations at all we get white noise and if the autocorrelation function

has infinite correlation we get a uniform gray. We believe that cloud like images are formed when the

autocorrelation has a certain range and/or spectral shape and further that for such autocorrelation

functions there are many types of spectra that can produce them, not only 1/f . Of course, there is

a one to one relationship between a given autocorrelation function and power spectra but what we

are saying is that for a class or range of correlation functions there are many power spectra of very

different functional forms that can produce such autocorrelation functions.

Insert pictures from file CloudFigures.tex here

30.6 Nonstationary clouds

Due to the different local conditions of wind, humidity, and temperature, there is an evident variation

in the uniformity of the shape of clouds. Since clouds vary in nature with position, it is natural to

think that also their spectral representation will be a function of position. It is hence interesting to

build a realistic model of such nonstationarities.

We have seen that the power spectrum Ps(ωx, ωy) of a cloud s(x, y) can be modeled as

Ps(ωx, ωy) =
1(√

ω2
x + ω2

y

)2γ (409)

To obtain this power spectrum we have processed white Gaussian noise f(x, y) with a filter that has
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a transfer function given by

H(ωx, ωy) =
1(√

ω2
x + ω2

y

)γ (410)

We remind that if we start with white Gaussian noise, which has a constant power spectrum given by

Pf (ωx, ωy) = N0 (411)

the result of the filtering is [?]

Ps(ωx, ωy) = |H(ωx, ωy)|2 Pf (ωx, ωy) (412)

=
N0(√

ω2
x + ω2

y

)2γ (413)

This is exactly the type of spectrum we seek, namely Eq. (409). In the spatial domain the filtering is

given by a two-dimensional convolution

s(x, y) =
∫∫

h(x− x′, y − y′)f(x′, y′)dx′dy′ (414)

where h(x, y) is the impulse response of the filter, obtained from the transfer function via Fourier

inversion

h(x, y) =
1

(2π)2

∫∫
H(ωx, ωy)eiωxx+iωyydωxdωy (415)

The type of clouds generated by the described method depends on the parameter γ. In Fig. 30 we

show the cloud corresponding to γ = 1, while in Fig. 31 the case γ = 1.5 is shown. One notices that

as γ increases, the clouds are bigger and change slower with respect to position. This effect is due to

the increased lowpass nature of the filter H(ωx, ωy) used to generate the cloud.

Since the clouds vary in nature with position, it is natural to think that also their spectral repre-

sentation will be a function of position. Given that we are using a 1/fγ spectral model, an immediate

way of modeling a nonstationary cloud is to make γ a function of position, that is to have γ(x, y).

In order to do this, we use the filter approach reviewed in the introduction where now we take the

transfer function to depend on position in the following way

H(ωx, ωy, x, y) =
1

(√
ω2

x + ω2
y

)γ(x,y)
(416)

That is, the dependence of the filter shape on position is obtained by making γ(x, y) a function of

position. Therefore the convolution operation of Eq. (414) that generates the cloud s(x, y) from the

white Gaussian noise f(x, y) will be replaced by the general integral

s(x, y) =
∫∫

h(x, x′, y, y′)f(x′, y′)dx′dy′ (417)
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Figure 30: Stationary cloud obtained with γ = 1.

Figure 31: Stationary cloud obtained with γ = 1.5.
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where now h(x, x′, y, y′) is the Green’s function given by

h(x, x′, y, y′) =
1

(2π)2

∫∫
H(ωx, ωy, x, y)eiωxx′+iωyy′dωxdωy (418)

The corresponding algorithm is a direct implementation of the Green’s integral of Eq. (417).

We now test the method by imposing different laws for the parameter γ(x, y).

Radial case

We first impose γ to be constant for all the positions that have the same distance from a given

reference point. We choose as the reference point the position (x, y) = (0, 0), and we model γ with

γ(r) = γ1 +
γ2 − γ1

R
r (419)

where r is the radius given by

r =
√

x2 + y2 (420)

and R is the maximum distance from the reference point, that is reached in the corner (xMAX , yMAX)

that is the farthest from the reference point

R =
√

x2
MAX + y2

MAX (421)

Hence Eq. (419) imposes a linear variation of γ from an initial value of γ1 in the reference point to a

final value of γ2 in the farthest point. Fig. 32 represents the values taken by γ on the image, when

γ1 = 1 and γ2 = 1.8. In Fig. 33 we show the result of our method. We notice that the uniformity

of the clouds vary with position. In the lower bottom corner the clouds are more similar to the ones

of Fig. 30, obtained for the stationary case with γ = 1. While we reach the upper top corner we see

that the clouds become similar to the one of Fig. 31, that represents the stationary case with γ = 1.5.

We have hence obtained our goal to generate nonstationary clouds by changing the local shape of the

filter H(ωx, ωy, x, y).

Lateral case

We now impose γ to be a function of x only, that is

γ(x) = γ1 +
γ2 − γ1

xMAX
x (422)

Hence we have chosen γ to increase linearly from γ1 to γ2 with the x position, and to be constant with

respect to y. Fig. 34 shows the values taken by γ, when γ1 = 1 and γ2 = 1.8. In Fig. 35 the clouds

obtained in this case are shown. We notice that the clouds located towards the left side of the picture

are similar to the ones obtained in the stationary case with γ = 1, shown in Fig. 30. While we move

towards the right side of the picture we see that the clouds become more similar to the ones obtained

in the stationary case with γ = 1.5 and represented in Fig. 31.
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Figure 32: These are the values taken by the γ parameter in the model of Eq. ( 418). The parameter

γ follows Eq. ( 419), with γ1 = 1 and γ2 = 1.8.
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Figure 33: This picture shows nonstationary clouds that have been obtained by imposing the parameter

γ to change as per Eq. (419). The clouds in the region around the bottom left corner are similar to

the ones of Fig. 30, while the clouds around the upper right corner are better represented by the ones

in Fig. 31.
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Figure 34: These are the values taken by the γ parameter in the model of Eq. (418). The parameter

γ follows Eq. ( 422), with γ1 = 1 and γ2 = 1.8.
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Figure 35: This picture shows nonstationary clouds that have been obtained by imposing the parameter

γ to change as per Eq. (422). The clouds in the region around the left side of the image are similar

to the ones of Fig. 30, while the clouds in the region around the right side of the image are better

represented by the ones in Fig. 31.
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31 Adjustable bandwidth concept

The adjustable bandwidth concept (ABC) is a method that enhances the performances of detection

and estimation algorithms [?, ?, ?]. The aim is to enhance nonstationary signals in noise, that is,

to bring out the main features of signals that may be buried in noise. This is essential for detection

and classification and the method may be thought of as a “preprocessing algorithm” for classification

applications and in particular for automatic target recognition methods. In this article we show that

the ABC approach is a time-frequency method in that its basic idea is to treat time and frequency

jointly. In particular we show that the algorithm transforms a time-frequency distribution by means of

individual time-frequency transformations into a set of final time-frequency distributions. Each step

of the procedure can be understood and formulated in terms of the kernel method, a technique that

is standard in time-frequency analysis [?, ?]. Once the procedure is formulated in terms of kernels,

the ABC properties can be better studied and can suggest further enhancement and effectiveness of

the method. We develop an exactly solvable example that illustrates some of the main issues and also

shows the behavior of the method.

31.1 Time-frequency and the kernel method

A fundamental idea of time-frequency distributions is the concept of a kernel. The kernel character-

izes the distribution and its properties and typically by examining the kernel one can ascertain the

properties of the distribution. There have been many methods and distributions proposed over the

years, among them the Wigner distribution, the spectrogram, the Choi-Williams, Margenau-Hill or

Rihaczek and the Zam distributions and several others. Among the many areas to which they have

been applied are biomedical signal analysis (e.g., heart sounds, heart rate, the electroencephalogram

(EEG), the electromyogram (EMG) and others), machine fault monitoring, radar and sonar signals,

acoustic scattering, wave propagation, speech processing, analysis of marine mammal sounds, musical

instruments, linear and nonlinear dynamical systems, among many others. The primary reason for

the applicability of these methods to such a variety of fields is that in all the cases cited, the spectra

of the signals of interest change with time and these changes are fundamental to understand as they

reflect the source and/or propagation medium [?].

All time-frequency distributions may be generated from the general class that is given by [?]

C(t, ω) =
1

4π2

∫∫∫
s∗(u− 1

2
τ) s(u +

1
2
τ) φ(θ, τ) e−jθt−jτω+jθud ud τd θ (423)

where φ(θ, τ) is a two dimensional function, the kernel. An alternative and useful formulation is to

write

C(t, ω) =
1

4π2

∫∫
M(θ, τ) e−jθt−jτωd θd τ (424)
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where

M(θ, τ) =φ(θ, τ)
∫

s∗(u− 1
2
τ) s(u +

1
2
τ) ejθud u (425)

=φ(θ, τ)A(θ, τ) (426)

and where A(θ, τ) is the standard ambiguity function commonly used in radar for the design of signals.

The function M(θ, τ) is called the characteristic function of the distribution.

We now briefly mention some kernels and their respective distributions. If the kernel is taken

to be one then the Wigner distribution is obtained [?]. To avoid the cross term problems of the

Wigner distribution a kernel methodology has been developed for kernel design and these ideas were

initiated by Choi and Williams and Zhao, Atlas and Marks [?]. The Choi-Williams kernel is given

by φ(θ, τ) = exp(−θ2τ2/σ) and the Zam kernel by φ(θ, τ) = g(τ) |τ | sin aθτ
aθτ . Williams and co-workers

devised and crystallized the idea of kernel design [?, ?]. They developed a methodology for the

construction of distributions with desirable properties. Of particular interest is the spectrogram,

given by

CS(t, ω) =
∣∣∣∣

1√
2π

∫
w(t− t′)s(t′)e−iωt′dt′

∣∣∣∣
2

(427)

where w(t) is the window. The kernel for the spectrogram is given by

φ(θ, τ) =
∫

w∗(u− 1
2
τ) w(u +

1
2
τ) ejθud u (428)

That is, the kernel of the spectrogram is the ambiguity function of the window. We point out that

the squared magnitude of the wavelet transform can be used as a time frequency distribution and

formulated in the above terms [?, ?]. Also, a number of fundamental results on the relation between

the distribution and kernel have been developed, over the last ten years, the paper by Loughlin et. all

being fundamental [?]

While the kernel method has generally been used to study, obtain, and characterize distributions,

we discuss here the fact that it can also be used as a way of transforming distributions. The reason we

emphasize this is that the ABC method is a sequence of time-frequency distribution transformations.

Here we give some general properties of transformation. Suppose we have two distributions, C1 and

C2, with corresponding kernels, φ1 and φ2. Their respective characteristic functions are related by

M1(θ, τ) =
φ1(θ, τ)
φ2(θ, τ)

M2(θ, τ) (429)

This relationship connects the characteristic functions of any two distributions. To obtain the rela-

tionship between the distributions one uses Eq. (424) to obtain

C1(t, ω) =
∫∫

g12(t′ − t, ω′ − ω) C2(t′, ω′)d t′dω′ (430)
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with

g12(t, ω) =
1

4π2

∫∫
φ1(θ, τ)
φ2(θ, τ)

ejθt+jτωd θd τ (431)

What this shows is that one distribution can be transformed into another by way of a two-dimensional

convolution where the convolution function is given in terms of the kernels of each distribution.

31.2 ABC Method

The ABC approach is a multi-stage procedure that operates on a starting time-frequency distribution,

CS(t, ω), and generates N output distributions, C1(t, ω), C2(t, ω), ... , CN (t, ω). In this paper we

show that the procedure at each stage is a time-frequency distribution transformation and that the

end distribution can be characterized by a kernel which is a functional of the kernels at each stage.

We first give an overall view of the basic algorithm and indeed we present two but equivalent

views. The first formulates everything in the time-frequency plane and the second formulates some

of the steps in the kernel or ambiguity function domain as discussed above. Each formulation has

certain advantages, the first formulation allows a clearer mathematical view of the issues but the

second formulation lends itself to more detailed discussion of the implementation issues. We present

both formulations but in this paper we discuss in detail the second one. The first view is presented in

detail in [?] where also an analytic example is given. The equivalence of the two formulations is given

in [?].

In the first formation the basic idea is to take a time-frequency distribution and from it obtain N

new distributions. The new distributions have progressively different perspectives or resolutions of the

original distribution. For the starting distribution we use CS(t, ω), and the N resulting distributions

are C1(t, ω), C2(t, ω), ... CN (t, ω). However the actual iterative process is done on N intermediate

distributions that we call A1(t, ω), A2(t, ω), ..., AN (t, ω). The iterative process is

Am(t, ω) = Am−1(t, ω)−
∫

hm−1(t− t′, ω − ω′) Am−1(t′, ω′)dt′dω′ (432)

and to start one takes A1(t, ω) = CS(t, ω). The hm(t, ω) are fixed functions. We note that at each

stage one removes from the distribution the effect that the second term of Eq. (432) produces. The

iterative scheme, Eq. (432), is self contained and produces distributions with certain properties that

are achieved by the judicious choice of the hm(t, ω) so chosen to achieve required results, such as

frequency smoothing. Now, to further manipulate and enhance the result we obtain Cm(t, ω) from

Am(t, ω) by

Cm(t, ω) =
∫

gm(t− t′, ω − ω′)Am(t′, ω′)dt′dω′ (433)

where again g1(t, ω), g2(t, ω), ..., gN (t, ω) are fixed filter functions prechosen to achieve desired char-

acteristics. Of course one can just stick with the A’s and from a mathematical point of view
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that can be achieved by taking delta functions for the g’s, in which case the result would be that

Cm(t, ω) = Am(t, ω). Also, one can combine Eq. (433) and Eq. (432) but we have found it clearer

to write the procedure in the above form. We note that both transformations in Eq. (433) and Eq.

(432) are of the form as given by Eq. (430).

In the second formulation, at each stage of the algorithm there is an input distribution Am(t, ω),

an intermediate distribution Bm(t, ω), and an output distribution Cm(t, ω). The input distribution at

the stage 1 is A1(t, ω) ≡ CS(t, ω). The distributions Am(t, ω) and Bm(t, ω) are needed to calculate

the output and to go on to the next stage. In particular we tabulate here the overall steps:

Am(t, ω) = Am−1(t, ω)−Bm−1(t, ω) (434)

Bm(t, ω) = is calculated from Am(t, ω) through a frequency average (435)

Cm(t, ω) = is calculated from Bm(t, ω) through a time average (436)

In addition, we will need the characteristic functions for each distribution and we use the following

notation am(θ, τ), bm(θ, τ) and cm(θ, τ). That is

am(θ, τ) =
∫∫

Am(t, ω) ejθt+jτωd tdωτ (437)

and similarly for bm(θ, τ), and cm(θ, τ). We now describe the two steps indicated above. For both of

them we will use the characteristic function formulation, because it makes the derivation much easier.

31.3 First sub step: Calculation of Bm(t, ω) from Am(t, ω) through a frequency

average

The distribution Bm(t, ω) is obtained from Am(t, ω) through a lowpass filtering, with the aim of

smoothing out noise along the frequency axis of the input distribution of the stage. The amount of

filtering is in general a function of the stage. In the characteristic function domain we have that, at

stage m = 1, 2, . . . N

bm(θ, τ) =
√

2πHm(τ)am(θ, τ) (438)

where Hm(τ) is the transfer function of the lowpass filter at the m-th stage. We have defined

HN (τ) ≡ 1 (439)

Also, because of Eq. (434) we see that for m = 2, 3, . . . N

am(θ, τ) = [1−
√

2πHm−1(τ)]am−1(θ, τ) (440)

=
m−1∏

l=1

[1−
√

2πHm−l(τ)]MS(θ, τ) (441)
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Putting together Eq. (438) and Eq. (440) we obtain

bm(θ, τ) = φωm(τ)MS(θ, τ) (442)

=

[√
2πHm(τ)

m−1∏

l=1

[1−
√

2πHm−l(τ)]

]
MS(θ, τ) (443)

where we have defined the frequency averaging kernel as

φωm(τ) =
√

2πHm(τ)
m−1∏

l=1

[1−
√

2πHm−l(τ)] (444)

31.4 Second sub step: Calculation of Cm(t, ω) from Bm(t, ω) through a time average

The distribution Cm(t, ω) is obtained from Bm(t, ω) through a moving average in time, with the aim

of reducing noise along the time direction of the input distribution of the stage. If we consider the

m-th stage of the algorithm, m = 1, 2, . . . , N , the time averaging can be written in the time-frequency

domain as

Cm(t, ω) =
1

Tm

∫ t+Tm/2

t−Tm/2
Bm(t′, ω)dt′ (445)

=
1

Tm

∫
PTm(t− t′)Bm(t′, ω)dt′ (446)

=
1

Tm
PTm(t) ∗Bm(t, ω) (447)

where the star sign indicates convolution and PTm(t) is the rectangular window defined as

PTm(t) =
1 −Tm/2 < t < Tm/2

0 elsewhere
(448)

and also bN (θ, τ) ≡ aN (θ, τ). In the characteristic function domain we have that

cm(θ, τ) = φtm(θ)bm(θ, τ) (449)

=
√

2π
1

Tm
P̄Tm(θ)bm(θ, τ) (450)

where P̄Tm(θ) is the inverse Fourier transform of PTm(t) and we have defined the time averaging kernel

as

φtm(θ) =
√

2π
1

Tm
P̄Tm(θ) (451)
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31.5 Time-Frequency averaging in the ABC algorithm

We will now derive the exact expression for the output distributions generated by the algorithm. We

see by considering Eq. (449) and Eq. (442) that the output of stage m is

cm(θ, τ) = φtm(θ)bm(θ, τ) (452)

= φtm(θ)φωm(τ)MS(θ, τ) (453)

=

[
2π

1
Tm

P̄Tm(θ)Hm(τ)
m−1∏

l=1

[1−
√

2πHm−l(τ)]

]
MS(θ, τ) (454)

= φm(θ, τ)MS(θ, τ) (455)

where

φm(θ, τ) = φtm(θ)φωm(τ) (456)

= 2π
1

Tm
P̄Tm(θ)Hm(τ)

m−1∏

l=1

[1−
√

2πHm−l(τ)] (457)

is the kernel of the distribution at stage m, that is hence independent from the input distribution. We

note that at stage m = 1 the multiplication operation
∏

has to be set equal to 1.

Convergence and weighted averages.6 We now address the issue of the convergence of the algorithm.

We have found from experience that the algorithm always converges and we believe that some insight

into this issue can be gained by the following considerations. In [?] it is shown for the discrete-time

case that the ABC frequency averaging of the input is equivalent to a filter-bank decomposition.

Therefore, just as the output components of a filter bank can be recombined to “converge” to the

input, the outputs identified by Eq. (433) can be recombined to “converge” to the input. Also, in [?]

a simple analytic example is presented and at least for that example one can see the that indeed at

each step one gets the appropriate convergence. One of the advantages of formulating the algorithm

by way of Eqs. (433) and (432) is that it crystallized the procedures and allows for the possibility of

a mathematical study of the convergence. This issue is currently being studied.

In the above some parameters are estimated and averaged simply but of course one could use

weighted average. Weighted average is always an option and any specific choice of filter parameters

will always be “optimal” for some signal scenarios and “sub-optimal” for others. This paper focuses on

formulating the ABC process in continuous-time and continuous-frequency, from the original discrete-

time, discrete-frequency formulation. This new formulation then lends itself to study this issue. Similar

issues regarding weighted averages are considered in [?].
6We thank the referees for bringing some of these points to our attention.
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Relation between direct time-frequency formulation and the ambiguity function domain. We repeat

here the two formulations of the ABC algorithm for convenience. In time-frequency we have the two

equations

Am(t, ω) = Am−1(t, ω) (458)

−
∫

hm−1(t− t′, ω − ω′) Am−1(t′, ω′)d t′dω′

Cm(t, ω) =
∫

gm(t− t′, ω − ω′)Am(t′, ω′)d t′dω′ (459)

with A1(t, ω) ≡ CS(t, ω). In the characteristic function domain it is

cm(θ, τ) = φm(θ, τ)MS(θ, τ) (460)

= φtm(θ)φωm(τ)MS(θ, τ) (461)

=
[
2π

1
Tm

P̄Tm(θ)Hm(τ)
]
× (462)

[
m−1∏

l=1

[1−
√

2πHm−l(τ)]

]
MS(θ, τ) (463)

To point out the connection we write Eq. (458) and Eq. (459) in the characteristic function domain

am(θ, τ) =
[
1− h̄m(θ, τ)

]
am−1(θ, τ) (464)

=
∏m

k=1

[
1− h̄k(θ, τ)

]
a1(θ, τ) (465)

and

cm(θ, τ) = ḡm(θ, τ)am (466)

= ḡm(θ, τ)
∏m

k=1

[
1− h̄k(θ, τ)

]
a1(θ, τ) (467)

where h̄m(θ, τ) and ḡm(θ, τ) are the filters hm(t, ω) and gm(t, ω) in the characteristic function domain.

Since

a1(θ, τ) ≡ MS(θ, τ) (468)

we see that if we choose

φm(θ, τ) = ḡm(θ, τ)
∏m

k=1

[
1− h̄k(θ, τ)

]
(469)

we have the equivalent formulation of the characteristic function domain. By further relaxing the

constraint of the time kernel φtm(θ) to be a function of θ only and the frequency kernel φωm(τ) to be

a function of τ only we establish the connection

φtm(θ, τ) = ḡm(θ, τ) (470)

φωm(τ) =
∏m

k=1

[
1− h̄k(θ, τ)

]
(471)

thus showing the one to one relationship among the two formulations.
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31.6 Examples

To demonstrate the application of the ABC process we present a number of cases. The first is a

signal composed of the sum of a sinusoid, a chirp (swept frequency), an impulse, and additive white

Gaussian noise. The term “white” refers to the fact that the noise power is uniform across frequency.

For this case, the noise power is low, with the signal-to-noise power ratio (SNR) set to 70 dB for the

sinusoid as measured in a frequency bin. The spectrogram generated is based on a 1024 sample FFT,

with a rectangular data window, no data overlap between time segments and logarithmic scaling. The

amplitudes of the chirp and impulse signal components are set to achieve similar power levels per

FFT bin as the sinusoid component. The intent is to demonstrate separation of these unique signal

components into the various output stages by the ABC process.

The second example is essentially the same as the first, with the exception that the additive noise

component is increased substantially such that the sinusoidal SNR is now 10 dB per FFT bin. Thus

the sinusoid, chirp and impulse are the same as in the first signal. For each case, the signal is quantized

to 16 bits for storage to file prior to the ABC processing.

For both signals, the ABC parameters are set to the same values. In particular, 3 processing stages

are used. The first stage lowpass filter is a finite impulse response (FIR) filter of 129 coefficients, each

coefficient equal to 1/129. Likewise, the stage 2 lowpass filter is a 7 coefficient FIR filter, each

coefficient equal to 1/7. Thus both filters are implemented as simple moving averages. Note that filter

design will affect the ABC processing performance. While the parameters chosen are appropriate for

the signal scenarios presented, these parameters have not been optimized. (The effect of this choice

of parameters will be apparent.) In addition to frequency averaging, time averaging is accomplished

in the second and third stages of the implemented ABC process. An average of 2 time segments is

accomplished in the second stage, and an average of 10 time segments is accomplished in the third

stage.

Results are shown in Figs. 1-4 for the 70 dB SNR case, and Figs. 5-8 for the 10 dB SNR case.

As seen in Fig. 1, the sinusoid is at bin 240 for all segments. The chirp component sweeps up in

frequency from bin 0 to 511, then back down to 0. The impulse occurs at time segment 256. Note that

in progressing from stage to stage, the desired components are much more distinguishable from each

other, and from the background additive noise. However, note also that the energy of the chirp signal

is present in both stage 1 and stage 3, in addition to the dominant chirp output in stage 2. Likewise,

the sinusoidal component is dominant in stage 3, but also noticeable in stage 2. This observation

relates to the need for optimization of the filter parameters of the ABC process, when there exists

a-priori information regarding the input.

In Fig. 5, note the adverse affects of increasing the additive noise component. The sinusoid, chirp
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Figure 36: Input distribution CS(t, ω) when SNR = 70dB.

Figure 37: Output distribution C1(t, ω) at stage 1 (SNR = 70dB).
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Figure 38: Output distribution C2(t, ω) at stage 2 (SNR = 70dB).

Figure 39: Output distribution C3(t, ω) at stage 3 (SNR = 70dB).
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Figure 40: Input spectrogram CS(t, ω) when SNR = 10dB.

Figure 41: Output distribution C1(t, ω) at stage 1 (SNR = 10dB).
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Figure 42: Output distribution C2(t, ω) at stage 2 (SNR = 10dB).

Figure 43: Output distribution C3(t, ω) at stage 3 (SNR = 10dB).
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and impulse are difficult to discern. Even so, the benefits of the ABC process are easily observed. The

desired signal components are separated in preparation for post-processing, such as threshold-based

detection.

Example 2

We consider a specific example to see the effect of the procedure. For the signal we take a chirp

with no amplitude modulation

s(t) = ejkt2/2 (472)

For the starting distribution we take

CS(t, ω) = δ(ω − kt) (473)

which is the Wigner distribution of the signal[?, ?]. The instantaneous frequency is ωi = kt and

therefore the distribution is totally concentrated along the instantaneous frequency. For this example

we calculate C1(t, ω), A2(t, ω) and C2(t, ω).

For the filters we take

g1(t, ω) =
√

α1β1

π
exp(−α1t

2 − β1ω
2) (474)

g2(t, ω) =
√

α2/π exp(−α2t
2)δ(ω) (475)

h1(t, ω) =
√

β1/πδ(t) exp(−β1ω
2) (476)

We have taken these filters because they are directly connected in a simple way to Noga’s original

formulation of the algorithm. In particular, the filter g1(t, ω) is the combination of the lowpass filtering

and the time averaging performed by the algorithm at the first stage. The lowpass filter has impulse

response h1(t, ω) and the first time average is exp(−α1t
2)δ(ω). The time average for the second stage

is given by g2(t, ω). All these filters are defined in the time-frequency plane, while in the original

formulation they are defined on time and frequency separately.

A straightforward calculation gives the following results

C1(t, ω) =

√
α1β1

π(α1 + β1k2)
(477)

exp
[
−α1t

2 − β1ω
2 +

(α1t + β1kω)2

α1 + β1k2

]

=

√
α1β1

π(α1 + β1k2)
exp

[
−α1β1

(ω − kt)2

α1 + β1k2

]
(478)

A2 = δ(ω − kt)−
√

β1/π exp
[−β1(ω − kt)2

]
(479)
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C2(t, ω) =
1
|k|

√
α2/π exp(−α2(ω − kt)2/k2) (480)

−
√

α2β1

π(α2 + β1k2)
exp

[
−α2t

2 − β1ω
2 +

(α2t + β1kω)2

α2 + β1k2

]

=
1
|k|

√
α2/π exp(−α2(ω − kt)2/k2) (481)

−
√

α2β1

π(α2 + β1k2)
exp

[
−α2β1

(ω − kt)2

α2 + β1k2

]

We choose the following parameters: α1 = 1000, α2 = 100, β1 = 0.01 and k = 2π and we show

the quantities CS(t, ω), C1(t, ω) and C2(t, ω). In Fig. 44 we plot the input distribution CS(t, ω), that

is a chirp concentrated along the instantaneous frequency ωi = βt. In Fig. 45 we have C1(t, ω), the

output of the first stage of the algorithm. We notice that the chirp has been spread in both time

and frequency. This effect is generated by the filter g1(t, ω) that performed a time and frequency

smoothing on the input distribution. The importance of the smoothing is related to noise suppression,

but here we investigated a noise free deterministic case in order to understand the basic operation

performed by the method. Finally in Fig. 46 we show the second output of the algorithm, C2(t, ω).

With judicial choices of filter parameters, we can adjust the amount of frequency and time averaging

in each stage. In the same fashion as evaluating time filters with an input impulse and observing

the output response, here we have chosen a swept impulse in the time-frequency plane to evaluate

and observe the output results. We observe that the first stage output responds only slightly to the

chosen input signal, while the second stage responds substantially. This is due to the fact that the

input signal is narrow in (instantaneous) bandwidth. We point out that the output distributions can

be locally negative, as a consequence of having chosen the Wigner distribution. This fact has little

interest since one could have chosen a modified Wigner distribution that guarantees positivity and

still have very similar results. These results demonstrate the two key points of the ABC method:

1. Every output distribution Ck(t, ω) is smoothed in time and frequency with respect to the initial

distribution CS(t, ω).

2. Every stage of the algorithm emphasizes a different region of the characteristic function domain

of the input distribution.

We mention two subsidiary issues. First is the issue of the starting distribution. Noga, in his

original work used the log-spectrogram, but other starting distributions are possible, and perhaps

may be more effective. How the final distribution depends on the initial distribution can now be
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Figure 44: Input distribution CS(t , ω). The Dirac function is represented by its numerical version.

Figure 45: Output distribution C1(t, ω) at the first stage.
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Figure 46: Output distribution C2(t, ω) at the second stage.

studied theoretically because one can explicitly express the steps in the determination of the kernels.

This should be explored. Secondly, in the original formulation the log-spectrogram was used and this

has a number of advantages. We have not done so in the current formulation because we wanted to

understand the time and frequency averaging operation done by the algorithm and keep that issue

separate from the benefits of using the log-spectrum.
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